PRESENTING PROBABILITY GENOTYPING AT TRIAL:
Best practices & Avoiding error

WRITTEN MATERIALS

Chris Lindberg, DDA
Gang Prosecution Unit
Team Leader, East County
Desk: (619) 441-4262
Email: clindb@sdcda.org

CDAA Forensic DNA for Prosecutors
10:45 – Noon, March 14, 2018, Anaheim, CA
INDEX

1. ABA Journal, “Code of Science: Defense lawyers want to peek behind the curtain of probabilistic genotyping.” 3
2. Sample STRMix Kelly / Frye Brief by San Diego County Deputy District Attorney Julianne Reizen. 6
4. People of the State of New York v. John Wakefield 37
5. The People of the State of Michigan v. Elamin Muhammad 47
6. Muhammad Transcript, Dr. Buckleton Testimony 52
7. The People of the State of New York v. Oral Hillary 126
8. The People of the State of New York v. Vincent Bullard-Daniel 136
9. The People of the State of California v. Superior Court of Los Angeles (Chubbs) 151
10. Martell Chubbs v. Superior Court of Los Angeles (People) 174
11. Testimony of Dr. Buckleton, People v. Larry Alvin Davis (San Joaquin, DDA Gina Dell Maggiore) 192
12. Report to the President: Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature –Comparison Methods 313
13. NDAA Response to PCAST report 487
14. Internal Validation of STRmix – A multi laboratory response to PCAST 496
15. Access to STRmix Software by Defense Legal Teams 528
REPORT TO THE PRESIDENT
Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods

Executive Office of the President
President’s Council of Advisors on Science and Technology

September 2016
REPORT TO THE PRESIDENT
Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods

Executive Office of the President
President’s Council of Advisors on Science and Technology

September 2016
About the President’s Council of Advisors on Science and Technology

The President’s Council of Advisors on Science and Technology (PCAST) is an advisory group of the Nation’s leading scientists and engineers, appointed by the President to augment the science and technology advice available to him from inside the White House and from cabinet departments and other Federal agencies. PCAST is consulted about, and often makes policy recommendations concerning, the full range of issues where understandings from the domains of science, technology, and innovation bear potentially on the policy choices before the President.

For more information about PCAST, see www.whitehouse.gov/ostp/pcast.
The President’s Council of Advisors on Science and Technology

Co-Chairs

John P. Holdren
Assistant to the President for Science and Technology
Director, Office of Science and Technology Policy

Eric S. Lander
President
Broad Institute of Harvard and MIT

Vice Chairs

William Press
Raymer Professor in Computer Science and Integrative Biology
University of Texas at Austin

Maxine Savitz
Honeywell (ret.)

Members

Wanda M. Austin
President and CEO
The Aerospace Corporation

Christopher Chyba
Professor, Astrophysical Sciences and International Affairs
Princeton University

Rosina Bierbaum
Professor, School of Natural Resources and Environment, University of Michigan
Roy F. Westin Chair in Natural Economics, School of Public Policy, University of Maryland

S. James Gates, Jr.
John S. Toll Professor of Physics
Director, Center for String and Particle Theory
University of Maryland, College Park

Christine Cassel
Planning Dean
Kaiser Permanente School of Medicine

Mark Gorenberg
Managing Member
Zetta Venture Partners
Susan L. Graham
Pehong Chen Distinguished Professor Emerita in Electrical Engineering and Computer Science
University of California, Berkeley

Ed Penhoet
Director
Alta Partners
Professor Emeritus, Biochemistry and Public Health
University of California, Berkeley

Michael McQuade
Senior Vice President for Science and Technology
United Technologies Corporation

Barbara Schaal
Dean of the Faculty of Arts and Sciences
Mary-Dell Chilton Distinguished Professor of Biology
Washington University of St. Louis

Chad Mirkin
George B. Rathmann Professor of Chemistry
Director, International Institute for Nanotechnology
Northwestern University

Eric Schmidt
Executive Chairman
Alphabet, Inc.

Mario Molina
Distinguished Professor, Chemistry and Biochemistry
University of California, San Diego
Professor, Center for Atmospheric Sciences
Scripps Institution of Oceanography

Daniel Schrag
Sturgis Hooper Professor of Geology
Professor, Environmental Science and Engineering
Director, Harvard University Center for Environment
Harvard University

Craig Mundie
President
Mundie Associates

Staff

Ashley Predith
Executive Director

Jennifer L. Michael
Program Support Specialist

Diana E. Pankevich
AAAS Science & Technology Policy Fellow
PCAST Working Group

Working Group members participated in the preparation of this report. The full membership of PCAST reviewed and approved it.

Working Group

Eric S. Lander (Working Group Chair)
President
Broad Institute of Harvard and MIT

Michael McQuade
Senior Vice President for Science and Technology
United Technologies Corporation

S. James Gates, Jr.
John S. Toll Professor of Physics
Director, Center for String and Particle Theory
University of Maryland, College Park

William Press
Raymer Professor in Computer Science and Integrative Biology
University of Texas at Austin

Susan L. Graham
Pehong Chen Distinguished Professor Emerita in Electrical Engineering and Computer Science
University of California, Berkeley

Daniel Schrag
Sturgis Hooper Professor of Geology
Professor, Environmental Science and Engineering
Director, Harvard University Center for Environment
Harvard University

Staff

Diana E. Pankevich
AAAS Science & Technology Policy Fellow

Kristen Zarrelli
Advisor, Public Policy & Special Projects
Advisor, Public Policy & Special Projects

Writer

Tania Simoncelli
Senior Advisor to the Director
Broad Institute of Harvard and MIT
Senior Advisors

PCAST consulted with a panel of legal experts to provide guidance on factual matters relating to the interaction between science and the law. PCAST also sought guidance and input from two statisticians, who have expertise in this domain. Senior advisors were given an opportunity to review early drafts to ensure factual accuracy. PCAST expresses its gratitude to those listed here. Their willingness to engage with PCAST on specific points does not imply endorsement of the views expressed in this report. Responsibility for the opinions, findings, and recommendations in this report and for any errors of fact or interpretation rests solely with PCAST.

Senior Advisor Co-Chairs

The Honorable Harry T. Edwards
Judge
United States Court of Appeals
District of Columbia Circuit

Jennifer L. Mnookin
Dean, David G. Price and Dallas P. Price Professor of Law
University of California Los Angeles Law

Senior Advisors

The Honorable James E. Boasberg
District Judge
United States District Court
District of Columbia

The Honorable Pamela Harris
Judge
United States Court of Appeals
Fourth Circuit

The Honorable Andre M. Davis
Senior Judge
United States Court of Appeals
Fourth Circuit

Karen Kafadar
Commonwealth Professor and Chair
Department of Statistics
University of Virginia

David L. Faigman
Acting Chancellor & Dean
University of California Hastings College of the Law

The Honorable Alex Kozinski
Judge
United States Court of Appeals
Ninth Circuit

Stephen Fienberg
Maurice Falk University Professor of Statistics and Social Science (Emeritus)
Carnegie Mellon University

The Honorable Cornelia T.L. Pillard
Judge
United States Court of Appeals
District of Columbia Circuit
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Honorable Charles Fried</td>
<td>Beneficial Professor of Law</td>
<td>Harvard Law School, Harvard University</td>
</tr>
<tr>
<td>The Honorable Jed S. Rakoff</td>
<td>District Judge</td>
<td>United States District Court, Southern District of New York</td>
</tr>
<tr>
<td>The Honorable Nancy Gertner</td>
<td>Senior Lecturer on Law</td>
<td>Harvard Law School, Harvard University</td>
</tr>
<tr>
<td>The Honorable Patti B. Saris</td>
<td>Chief Judge</td>
<td>United States District Court, District of Massachusetts</td>
</tr>
</tbody>
</table>
President Barack Obama
The White House
Washington, DC 20502

Dear Mr. President:

We are pleased to send you this PCAST report on *Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods*. The study that led to the report was a response to your question to PCAST, in 2015, as to whether there are additional steps on the scientific side, beyond those already taken by the Administration in the aftermath of the highly critical 2009 National Research Council report on the state of the forensic sciences, that could help ensure the validity of forensic evidence used in the Nation’s legal system.

PCAST concluded that there are two important gaps: (1) the need for clarity about the scientific standards for the validity and reliability of forensic methods and (2) the need to evaluate specific forensic methods to determine whether they have been scientifically established to be valid and reliable. Our study aimed to help close these gaps for a number of forensic “feature-comparison” methods—specifically, methods for comparing DNA samples, bitemarks, latent fingerprints, firearm marks, footwear, and hair.

Our study, which included an extensive literature review, was also informed by inputs from forensic researchers at the Federal Bureau of Investigation Laboratory and the National Institute of Standards and Technology as well as from many other forensic scientists and practitioners, judges, prosecutors, defense attorneys, academic researchers, criminal-justice-reform advocates, and representatives of Federal agencies. The findings and recommendations conveyed in this report, of course, are PCAST’s alone.

Our report reviews previous studies relating to forensic practice and Federal actions currently underway to strengthen forensic science; discusses the role of scientific validity within the legal system; explains the criteria by which the scientific validity of feature-comparison forensic methods can be judged; and applies those criteria to the selected feature-comparison methods.
Based on our findings concerning the “foundational validity” of the indicated methods as well as their “validity as applied” in practice in the courts, we offer recommendations on actions that could be taken by the National Institute of Standards and Technology, the Office of Science and Technology Policy, and the Federal Bureau of Investigation Laboratory to strengthen the scientific underpinnings of the forensic disciplines, as well as on actions that could be taken by the Attorney General and the judiciary to promote the more rigorous use of these disciplines in the courtroom.

Sincerely,

John P. Holdren
Co-Chair

Eric S. Lander
Co-Chair
Table of Contents

The President’s Council of Advisors on Science and Technology ... v
PCAST Working Group .. vii
Senior Advisors .. viii
Table of Contents ... xii

Executive Summary .. 1

1. **Introduction** ... 21

2. **Previous Work on Validity of Forensic-Science Methods** ... 25
 - 2.1 DNA Evidence and Wrongful Convictions ... 25
 - 2.2 Studies of Specific Forensic-Science Methods and Laboratory Practices 27
 - 2.3 Testimony Concerning Forensic Evidence .. 29
 - 2.4 Cognitive Bias .. 31
 - 2.5 State of Forensic Science ... 32
 - 2.6 State of Forensic Practice .. 33
 - 2.7 National Research Council Report ... 34
 - 2.8 Recent Progress ... 35

3. **The Role of Scientific Validity in the Courts** ... 40
 - 3.1 Evolution of Admissibility Standards ... 40
 - 3.2 Foundational Validity and Validity as Applied ... 42

4. **Scientific Criteria for Validity and Reliability of Forensic Feature-Comparison Methods** 44
 - 4.1 Feature-Comparison Methods: Objective and Subjective Methods ... 46
 - 4.2 Foundational Validity: Requirement for Empirical Studies ... 47
 - 4.3 Foundational Validity: Requirement for Scientifically Valid Testimony 54
 - 4.4 Neither Experience nor Professional Practices Can Substitute for Foundational Validity 55
 - 4.5 Validity as Applied: Key Elements .. 56
 - 4.6 Validity as Applied: Proficiency Testing .. 57
 - 4.7 Non-Empirical Views in the Forensic Community ... 59
 - 4.8 Empirical Views in the Forensic Community .. 63
 - 4.9 Summary of Scientific Findings ... 65

5. **Evaluation of Scientific Validity for Seven Feature-Comparison Methods** 67
 - 5.1 DNA Analysis of Single-source and Simple-mixture samples .. 69
 - 5.2 DNA Analysis of Complex-mixture Samples .. 75
 - 5.3 Bitemark Analysis .. 83
 - 5.4 Latent Fingerprint Analysis ... 87
 - 5.5 Firearms Analysis ... 104
 - 5.6 Footwear Analysis: Identifying Characteristics ... 114
 - 5.7 Hair Analysis .. 118
 - 5.8 Application to Additional Methods .. 122
 - 5.9 Conclusion .. 122
“Forensic science” has been defined as the application of scientific or technical practices to the recognition, collection, analysis, and interpretation of evidence for criminal and civil law or regulatory issues. Developments over the past two decades—including the exoneration of defendants who had been wrongfully convicted based in part on forensic-science evidence, a variety of studies of the scientific underpinnings of the forensic disciplines, reviews of expert testimony based on forensic findings, and scandals in state crime laboratories—have called increasing attention to the question of the validity and reliability of some important forms of forensic evidence and of testimony based upon them.¹

A multi-year, Congressionally-mandated study of this issue released in 2009 by the National Research Council² (Strengthening Forensic Science in the United States: A Path Forward) was particularly critical of weaknesses in the scientific underpinnings of a number of the forensic disciplines routinely used in the criminal justice system. That report led to extensive discussion, inside and outside the Federal government, of a path forward, and ultimately to the establishment of two groups: the National Commission on Forensic Science hosted by the Department of Justice and the Organization for Scientific Area Committees for Forensic Science at the National Institute of Standards and Technology.

When President Obama asked the President’s Council of Advisors on Science and Technology (PCAST) in 2015 to consider whether there are additional steps that could usefully be taken on the scientific side to strengthen the forensic-science disciplines and ensure the validity of forensic evidence used in the Nation’s legal system, PCAST concluded that there are two important gaps: (1) the need for clarity about the scientific standards for the validity and reliability of forensic methods and (2) the need to evaluate specific forensic methods to determine whether they have been scientifically established to be valid and reliable.

This report aims to help close these gaps for the case of forensic “feature-comparison” methods—that is, methods that attempt to determine whether an evidentiary sample (e.g., from a crime scene) is or is not associated with a potential “source” sample (e.g., from a suspect), based on the presence of similar patterns, impressions, or other features in the sample and the source. Examples of such methods include the analysis of DNA, hair, latent fingerprints, firearms and spent ammunition, toolmarks and bitemarks, shoeprints and tire tracks, and handwriting.

¹ Citations to literature in support of points made in the Executive Summary are found in the main body of the report.
² The National Research Council is the study-conducting arm of the National Academies of Science, Engineering, and Medicine.
In the course of its study, PCAST compiled and reviewed a set of more than 2,000 papers from various sources—including bibliographies prepared by the Subcommittee on Forensic Science of the National Science and Technology Council and the relevant Working Groups organized by the National Institute of Standards and Technology (NIST); submissions in response to PCAST’s request for information from the forensic-science stakeholder community; and PCAST’s own literature searches.

To educate itself on factual matters relating to the interaction between science and the law, PCAST consulted with a panel of Senior Advisors comprising nine current or former Federal judges, a former U.S. Solicitor General, a former state Supreme Court justice, two law-school deans, and two distinguished statisticians who have expertise in this domain. Additional input was obtained from the Federal Bureau of Investigation (FBI) Laboratory and individual scientists at NIST, as well as from many other forensic scientists and practitioners, judges, prosecutors, defense attorneys, academic researchers, criminal-justice-reform advocates, and representatives of Federal agencies. The willingness of these groups and individuals to engage with PCAST does not imply endorsement of the views expressed in the report. The findings and recommendations conveyed in this report are the responsibility of PCAST alone.

The resulting report—summarized here without the extensive technical elaborations and dense citations in the main text that follows—begins with a review of previous studies relating to forensic practice and Federal actions currently underway to strengthen forensic science; discusses the role of scientific validity within the legal system; explains the criteria by which the scientific validity of forensic feature-comparison methods can be judged; applies those criteria to six such methods in detail and reviews an evaluation by others of a seventh method; and offers recommendations on Federal actions that could be taken to strengthen forensic science and promote its more rigorous use in the courtroom.

We believe the findings and recommendations will be of use both to the judiciary and to those working to strengthen forensic science.

Previous Work on Scientific Validity of Forensic-Science Disciplines

Ironically, it was the emergence and maturation of a new forensic science, DNA analysis, in the 1990s that first led to serious questioning of the validity of many of the traditional forensic disciplines. When DNA evidence was first introduced in the courts, beginning in the late 1980s, it was initially hailed as infallible; but the methods used in early cases turned out to be unreliable: testing labs lacked validated and consistently-applied procedures for defining DNA patterns from samples, for declaring whether two patterns matched within a given tolerance, and for determining the probability of such matches arising by chance in the population. When, as a result, DNA evidence was declared inadmissible in a 1989 case in New York, scientists engaged in DNA analysis in both forensic and non-forensic applications came together to promote the development of reliable principles and methods that have enabled DNA analysis of single-source samples to become the “gold standard” of forensic science for both investigation and prosecution.

Once DNA analysis became a reliable methodology, the power of the technology—including its ability to analyze small samples and to distinguish between individuals—made it possible not only to identify and convict true perpetrators but also to clear wrongly accused suspects before prosecution and to re-examine a number of past
convictions. Reviews by the National Institute of Justice and others have found that DNA testing during the course of investigations has cleared tens of thousands of suspects and that DNA-based re-examination of past cases has led so far to the exonerations of 342 defendants. Independent reviews of these cases have revealed that many relied in part on faulty expert testimony from forensic scientists who had told juries incorrectly that similar features in a pair of samples taken from a suspect and from a crime scene (hair, bullets, bitemarks, tire or shoe treads, or other items) implicated defendants in a crime with a high degree of certainty.

The questions that DNA analysis had raised about the scientific validity of traditional forensic disciplines and testimony based on them led, naturally, to increased efforts to test empirically the reliability of the methods that those disciplines employed. Relevant studies that followed included:

- a 2002 FBI re-examination of microscopic hair comparisons the agency’s scientists had performed in criminal cases, in which DNA testing revealed that 11 percent of hair samples found to match microscopically actually came from different individuals;
- a 2004 National Research Council report, commissioned by the FBI, on bullet-lead evidence, which found that there was insufficient research and data to support drawing a definitive connection between two bullets based on compositional similarity of the lead they contain;
- a 2005 report of an international committee established by the FBI to review the use of latent fingerprint evidence in the case of a terrorist bombing in Spain, in which the committee found that “confirmation bias”—the inclination to confirm a suspicion based on other grounds—contributed to a misidentification and improper detention; and
- studies reported in 2009 and 2010 on bitemark evidence, which found that current procedures for comparing bitemarks are unable to reliably exclude or include a suspect as a potential biter.

Beyond these kinds of shortfalls with respect to “reliable methods” in forensic feature-comparison disciplines, reviews have found that expert witnesses have often overstated the probative value of their evidence, going far beyond what the relevant science can justify. Examiners have sometimes testified, for example, that their conclusions are “100 percent certain;” or have “zero,” “essentially zero,” or “negligible,” error rate. As many reviews—including the highly regarded 2009 National Research Council study—have noted, however, such statements are not scientifically defensible: all laboratory tests and feature-comparison analyses have non-zero error rates.

Starting in 2012, the Department of Justice (DOJ) and FBI undertook an unprecedented review of testimony in more than 3,000 criminal cases involving microscopic hair analysis. Their initial results, released in 2015, showed that FBI examiners had provided scientifically invalid testimony in more than 95 percent of cases where that testimony was used to inculpate a defendant at trial. In March 2016, the Department of Justice announced its intention to expand to additional forensic-science methods its review of forensic testimony by the FBI Laboratory in closed criminal cases. This review will help assess the extent to which similar testimonial overstatement has occurred in other forensic disciplines.
The 2009 National Research Council report was the most comprehensive review to date of the forensic sciences in this country. The report made clear that some types of problems, irregularities, and miscarriages of justice cannot simply be attributed to a handful of rogue analysts or underperforming laboratories, but are systemic and pervasive—the result of factors including a high degree of fragmentation (including disparate and often inadequate training and educational requirements, resources, and capacities of laboratories), a lack of standardization of the disciplines, insufficient high-quality research and education, and a dearth of peer-reviewed studies establishing the scientific basis and validity of many routinely used forensic methods.

The 2009 report found that shortcomings in the forensic sciences were especially prevalent among the feature-comparison disciplines, many of which, the report said, lacked well-defined systems for determining error rates and had not done studies to establish the uniqueness or relative rarity or commonality of the particular marks or features examined. In addition, proficiency testing, where it had been conducted, showed instances of poor performance by specific examiners. In short, the report concluded that “much forensic evidence—including, for example, bitemarks and firearm and toolmark identifications—is introduced in criminal trials without any meaningful scientific validation, determination of error rates, or reliability testing to explain the limits of the discipline.”

The Legal Context

Historically, forensic science has been used primarily in two phases of the criminal-justice process: (1) investigation, which seeks to identify the likely perpetrator of a crime, and (2) prosecution, which seeks to prove the guilt of a defendant beyond a reasonable doubt. In recent years, forensic science—particularly DNA analysis—has also come into wide use for challenging past convictions.

Importantly, the investigative and prosecutorial phases involve different standards for the use of forensic science and other investigative tools. In investigations, insights and information may come from both well-established science and exploratory approaches. In the prosecution phase, forensic science must satisfy a higher standard. Specifically, the Federal Rules of Evidence (Rule 702(c,d)) require that expert testimony be based, among other things, on “reliable principles and methods” that have been “reliably applied” to the facts of the case. And, the Supreme Court has stated that judges must determine “whether the reasoning or methodology underlying the testimony is scientifically valid.”

This is where legal standards and scientific standards intersect. Judges’ decisions about the admissibility of scientific evidence rest solely on legal standards; they are exclusively the province of the courts and PCAST does not opine on them. But, these decisions require making determinations about scientific validity. It is the proper province of the scientific community to provide guidance concerning scientific standards for scientific validity, and it is on those scientific standards that PCAST focuses here.

We distinguish here between two types of scientific validity: foundational validity and validity as applied.

(1) **Foundational validity** for a forensic-science method requires that it be shown, based on empirical studies, to be repeatable, reproducible, and accurate, at levels that have been measured and are appropriate to the intended application. Foundational validity, then, means that a method can, in
principle, be reliable. It is the scientific concept we mean to correspond to the legal requirement, in Rule 702(c), of “reliable principles and methods.”

(2) Validity as applied means that the method has been reliably applied in practice. It is the scientific concept we mean to correspond to the legal requirement, in Rule 702(d), that an expert “has reliably applied the principles and methods to the facts of the case.”

Scientific Criteria for Validity and Reliability of Forensic Feature-Comparison Methods

Chapter 4 of the main report provides a detailed description of the scientific criteria for establishing the foundationally validity and reliability of forensic feature-comparison methods, including both objective and subjective methods.³

Subjective methods require particularly careful scrutiny because their heavy reliance on human judgment means they are especially vulnerable to human error, inconsistency across examiners, and cognitive bias. In the forensic feature-comparison disciplines, cognitive bias includes the phenomena that, in certain settings, humans may tend naturally to focus on similarities between samples and discount differences and may also be influenced by extraneous information and external pressures about a case.

The essential points of foundational validity include the following:

(1) Foundational validity requires that a method has been subjected to empirical testing by multiple groups, under conditions appropriate to its intended use. The studies must (a) demonstrate that the method is repeatable and reproducible and (b) provide valid estimates of the method’s accuracy (that is, how often the method reaches an incorrect conclusion) that indicate the method is appropriate to the intended application.

(2) For objective methods, the foundational validity of the method can be established by studying measuring the accuracy, reproducibility, and consistency of each of its individual steps.

(3) For subjective feature-comparison methods, because the individual steps are not objectively specified, the method must be evaluated as if it were a “black box” in the examiner’s head. Evaluations of validity and reliability must therefore be based on “black-box studies,” in which many examiners render

³ Feature-comparison methods may be classified as either objective or subjective. By objective feature-comparison methods, we mean methods consisting of procedures that are each defined with enough standardized and quantifiable detail that they can be performed by either an automated system or human examiners exercising little or no judgment. By subjective methods, we mean methods including key procedures that involve significant human judgment—for example, about which features to select within a pattern or how to determine whether the features are sufficiently similar to be called a probable match.
decisions about many independent tests (typically, involving “questioned” samples and one or more “known” samples) and the error rates are determined.

(4) Without appropriate estimates of accuracy, an examiner’s statement that two samples are similar—or even indistinguishable—is scientifically meaningless: it has no probative value, and considerable potential for prejudicial impact.

Once a method has been established as foundationally valid based on appropriate empirical studies, claims about the method’s accuracy and the probative value of proposed identifications, in order to be valid, must be based on such empirical studies. Statements claiming or implying greater certainty than demonstrated by empirical evidence are scientifically invalid. Forensic examiners should therefore report findings of a proposed identification with clarity and restraint, explaining in each case that the fact that two samples satisfy a method’s criteria for a proposed match does not mean that the samples are from the same source. For example, if the false positive rate of a method has been found to be 1 in 50, experts should not imply that the method is able to produce results at a higher accuracy.

To meet the scientific criteria for validity as applied, two tests must be met:

(1) The forensic examiner must have been shown to be capable of reliably applying the method and must actually have done so. Demonstrating that an expert is capable of reliably applying the method is crucial—especially for subjective methods, in which human judgment plays a central role. From a scientific standpoint, the ability to apply a method reliably can be demonstrated only through empirical testing that measures how often the expert reaches the correct answer. Determining whether an examiner has actually reliably applied the method requires that the procedures actually used in the case, the results obtained, and the laboratory notes be made available for scientific review by others.

(2) The practitioner’s assertions about the probative value of proposed identifications must be scientifically valid. The expert should report the overall false-positive rate and sensitivity for the method established in the studies of foundational validity and should demonstrate that the samples used in the foundational studies are relevant to the facts of the case. Where applicable, the expert should report the probative value of the observed match based on the specific features observed in the case. And the expert should not make claims or implications that go beyond the empirical evidence and the applications of valid statistical principles to that evidence.

We note, finally, that neither experience, nor judgment, nor good professional practices (such as certification programs and accreditation programs, standardized protocols, proficiency testing, and codes of ethics) can substitute for actual evidence of foundational validity and reliability. The frequency with which a particular pattern or set of features will be observed in different samples, which is an essential element in drawing conclusions, is not a matter of “judgment.” It is an empirical matter for which only empirical evidence is relevant. Similarly, an expert’s expression of confidence based on personal professional experience or expressions of consensus among practitioners about the accuracy of their field is no substitute for error rates estimated from relevant studies. For forensic feature-comparison methods, establishing foundational validity based on empirical evidence is thus a sine qua non. Nothing can substitute for it.
Evaluation of Scientific Validity for Seven Feature-Comparison Methods

For this study, PCAST applied the criteria discussed above to six forensic feature-comparison methods: (1) DNA analysis of single-source and simple-mixture samples, (2) DNA analysis of complex-mixture samples, (3) bitemarks, (4) latent fingerprints, (5) firearms identification, and (6) footwear analysis. For each method, Chapter 5 of the main report provides a brief overview of the methodology, discusses background information and studies, provides an evaluation on scientific validity, and offers suggestions on a path forward. For a seventh feature-comparison method—hair analysis—we do not undertake a full evaluation of scientific validity, but review supporting material recently released for comment by the Department of Justice. This Executive Summary provides only a brief summary of some key findings concerning these seven methods.

DNA Analysis of Single-Source and Simple-Mixture Samples

The vast majority of DNA analysis currently involves samples from a single individual or from a simple mixture of two individuals (such as from a rape kit). DNA analysis in such cases is an objective method in which the laboratory protocols are precisely defined and the interpretation involves little or no human judgment.

To evaluate the foundational validity of an objective method, one can examine the reliability of each of the individual steps rather than having to rely on black-box studies. In the case of DNA analysis of single-source and simple-mixture samples, each of the steps has been found to be “repeatable, reproducible, and accurate” with levels that have been measured and are “appropriate to the intended application” (to quote the requirement for foundational validity as stated above), and the probability of a match arising by chance in the population by chance can be estimated directly from appropriate genetic databases and is extremely low.

Concerning validity as applied, DNA analysis, like all forensic analyses, is not infallible in practice. Errors can and do occur. Although the probability that two samples from different sources have the same DNA profile is tiny, the chance of human error is much higher. Such errors may stem from sample mix-ups, contamination, incorrect interpretation, and errors in reporting.

To minimize human error, the FBI requires, as a condition of participating in the National DNA Index System, that laboratories follow the FBI’s Quality Assurance Standards. These require that the examiner run a series of controls to check for possible contamination and ensure that the PCR process ran properly. The Standards also requires semi-annual proficiency testing of all analysts who perform DNA testing for criminal cases. We find, though, that there is a need to improve proficiency testing.

DNA Analysis of Complex-Mixture Samples

Some investigations involve DNA analysis of complex mixtures of biological samples from multiple unknown individuals in unknown proportions. (Such samples arise, for example, from mixed blood stains, and increasingly from multiple individual touching a surface.) The fundamental difference between DNA analysis of complex-mixture samples and DNA analysis of single-source and simple mixtures lies not in the laboratory processing, but in the interpretation of the resulting DNA profile.
DNA analysis of complex mixtures is inherently difficult. Such samples result in a DNA profile that superimposes multiple individual DNA profiles. Interpreting a mixed profile is different from and more challenging than interpreting a simple profile, for many reasons. It is often impossible to tell with certainty which genetic variants are present in the mixture or how many separate individuals contributed to the mixture, let alone accurately to infer the DNA profile of each one.

The questions an examiner must ask, then, are, “Could a suspect’s DNA profile be present within the mixture profile? And, what is the probability that such an observation might occur by chance?” Because many different DNA profiles may fit within some mixture profiles, the probability that a suspect “cannot be excluded” as a possible contributor to complex mixture may be much higher (in some cases, millions of times higher) than the probabilities encountered for single-source DNA profiles.

Initial approaches to the interpretation of complex mixtures relied on subjective judgment by examiners and simplified calculations. This approach is problematic because subjective choices made by examiners can dramatically affect the answer and the estimated probative value—introducing significant risk of both analytical error and confirmation bias. PCAST finds that subjective analysis of complex DNA mixtures has not been established to be foundationally valid and is not a reliable methodology.

Given the problems with subjective interpretation of complex DNA mixtures, a number of groups launched efforts to develop computer programs that apply various algorithms to interpret complex mixtures in an objective manner. The programs clearly represent a major improvement over purely subjective interpretation. They still require scientific scrutiny, however, to determine (1) whether the methods are scientifically valid, including defining the limitations on their reliability (that is, the circumstances in which they may yield unreliable results) and (2) whether the software correctly implements the methods.

PCAST finds that, at present, studies have established the foundational validity of some objective methods under limited circumstances (specifically, a three-person mixture in which the minor contributor constitutes at least 20 percent of the intact DNA in the mixture) but that substantially more evidence is needed to establish foundational validity across broader settings.

Bitemark Analysis

Bitemark analysis typically involves examining marks left on a victim or an object at the crime scene and comparing those marks with dental impressions taken from a suspect. Bitemark comparison is based on the premises that (1) dental characteristics, particularly the arrangement of the front teeth, differ substantially among people and (2) skin (or some other marked surface at a crime scene) can reliably capture these distinctive features. Bitemark analysis begins with an examiner deciding whether an injury is a mark caused by human teeth. If so, the examiner creates photographs or impressions of the questioned bitemark and of the suspect’s dentition; compares the bitemark and the dentition; and determines if the dentition (1) cannot be excluded as having made the bitemark, (2) can be excluded as having made the bitemark, or (3) is inconclusive.

Bitemark analysis is a subjective method. Current protocols do not provide well-defined standards concerning the identification of features or the degree of similarity that must be identified to support a reliable conclusion.
that the mark could have or could not have been created by the dentition in question. Conclusions about all these matters are left to the examiner’s judgment.

As noted above, the foundational validity of a subjective method can only be established through multiple, appropriately designed black-box studies. Few studies—and no appropriate black-box studies—have been undertaken to study the ability of examiners to accurately identify the source of a bitemark. In these studies, the observed false-positive rates were very high—typically above ten percent and sometimes far above. Moreover, several of these studies employed inappropriate closed-set designs that are likely to underestimate the true false positive rate. Indeed, available scientific evidence strongly suggests that examiners not only cannot identify the source of bitemark with reasonable accuracy, they cannot even consistently agree on whether an injury is a human bitemark. For these reasons, PCAST finds that bitemark analysis is far from meeting the scientific standards for foundational validity.

We note that some practitioners have expressed concern that the exclusion of bitemarks in court could hamper efforts to convict defendants in some cases. If so, the correct solution, from a scientific perspective, would not be to admit expert testimony based on invalid and unreliable methods but rather to attempt to develop scientifically valid methods. But, PCAST considers the prospects of developing bitemark analysis into a scientifically valid method to be low. We advise against devoting significant resources to such efforts.

Latent Fingerprint Analysis

Latent fingerprint analysis typically involves comparing (1) a “latent print” (a complete or partial friction-ridge impression from an unknown subject) that has been developed or observed on an item with (2) one or more “known prints” (fingerprints deliberately collected under a controlled setting from known subjects; also referred to as “ten prints”), to assess whether the two may have originated from the same source. It may also involve comparing latent prints with one another. An examiner might be called upon to (1) compare a latent print to the fingerprints of a known suspect who has been identified by other means (“identified suspect”) or (2) search a large database of fingerprints to identify a suspect (“database search”).

Latent fingerprint analysis was first proposed for use in criminal identification in the 1800s and has been used for more than a century. The method was long hailed as infallible, despite the lack of appropriate empirical studies to assess its error rate. In response to criticism on this point in the 2009 National Research Council report, those working in the field of latent fingerprint analysis recognized the need to perform empirical studies to assess foundational validity and measure reliability and have made progress in doing so. Much credit goes to the FBI Laboratory, which has led the way in performing black-box studies to assess validity and estimate reliability, as well as so-called “white-box” studies to understand the factors that affect examiners’ decisions. PCAST applauds the FBI Laboratory’s efforts. There are also nascent efforts to begin to move the field from a purely subjective method toward an objective method—although there is still a considerable way to go to achieve this important goal.

PCAST finds that latent fingerprint analysis is a foundationally valid subjective methodology—albeit with a false positive rate that is substantial and is likely to be higher than expected by many jurors based on longstanding claims about the infallibility of fingerprint analysis. The false-positive rate could be as high as 1 error in 306
cases based on the FBI study and 1 error in 18 cases based on a study by another crime laboratory. In reporting results of latent-fingerprint examination, it is important to state the false-positive rates based on properly designed validation studies.

With respect to validity as applied, there are, however, a number of open issues, notably:

1. **Confirmation bias.** Work by FBI scientists has shown that examiners often alter the features that they initially mark in a latent print based on comparison with an apparently matching exemplar. Such circular reasoning introduces a serious risk of confirmation bias. Examiners should be required to complete and document their analysis of a latent fingerprint before looking at any known fingerprint and should separately document any additional data used during their comparison and evaluation.

2. **Contextual bias.** Work by academic scholars has shown that examiners’ judgments can be influenced by irrelevant information about the facts of a case. Efforts should be made to ensure that examiners are not exposed to potentially biasing information.

3. **Proficiency testing.** Proficiency testing is essential for assessing an examiner’s capability and performance in making accurate judgments. As discussed elsewhere in this report, proficiency testing needs to be improved by making it more rigorous, by incorporating it systematically within the flow of casework, and by disclosing tests for evaluation by the scientific community.

Scientific validity as applied, then, requires that an expert: (1) has undergone relevant proficiency testing to test his or her accuracy and reports the results of the proficiency testing; (2) discloses whether he or she documented the features in the latent print in writing before comparing it to the known print; (3) provides a written analysis explaining the selection and comparison of the features; (4) discloses whether, when performing the examination, he or she was aware of any other facts of the case that might influence the conclusion; and (5) verifies that the latent print in the case at hand is similar in quality to the range of latent prints considered in the foundational studies.

Concerning the path forward, continuing efforts are needed to improve the state of latent-print analysis—and these efforts will pay clear dividends for the criminal justice system. One direction is to continue to improve latent print analysis as a subjective method. There is a need for additional empirical studies to estimate error rates for latent prints of varying quality and completeness, using well-defined measures.

A second—and more important—direction is to convert latent-print analysis from a subjective method to an objective method. The past decade has seen extraordinary advances in automated image analysis based on machine learning and other approaches—leading to dramatic improvements in such tasks as face recognition and the interpretation of medical images. This progress holds promise of making fully automated latent

4 The main report discusses the appropriate calculations of error rates, including best estimates (which are 1 in 604 and 1 in 24, respectively, for the two studies cited) and confidence bounds (stated above). It also discusses issues with specific studies, including problems with studies that may contribute to differences in rates (as in the two studies cited).
fingerprint analysis possible in the near future. There have already been initial steps in this direction, both in academia and industry.

The most important resource to propel the development of objective methods would be the creation of huge databases containing known prints, each with many corresponding “simulated” latent prints of varying qualities and completeness, which would be made available to scientifically-trained researchers in academia and industry. The simulated latent prints could be created by “morphing” the known prints, based on transformations derived from collections of actual latent print-record print pairs.

Firearms Analysis

In firearms analysis, examiners attempt to determine whether ammunition is or is not associated with a specific firearm based on “toolmarks” produced by guns on the ammunition. The discipline is based on the idea that the toolmarks produced by different firearms vary substantially enough (owing to variations in manufacture and use) to allow components of fired cartridges to be identified with particular firearms. For example, examiners may compare “questioned” cartridge cases from a gun recovered from a crime scene to test fires from a suspect gun. Examination begins with an evaluation of class characteristics of the bullets and casings, which are features that are permanent and predetermined before manufacture. If these class characteristics are different, an elimination conclusion is rendered. If the class characteristics are similar, the examination proceeds to identify and compare individual characteristics, such as the markings that arise during firing from a particular gun.

Firearms analysts have long stated that their discipline has near-perfect accuracy; however, the 2009 National Research Council study of all the forensic disciplines concluded about firearms analysis that “sufficient studies have not been done to understand the reliability and reproducibility of the methods”—that is, that the foundational validity of the field had not been established.

Our own extensive review of the relevant literature prior to 2009 is consistent with the National Research Council’s conclusion. We find that many of these earlier studies were inappropriately designed to assess foundational validity and estimate reliability. Indeed, there is internal evidence among the studies themselves indicating that many previous studies underestimated the false positive rate by at least 100-fold.

We identified one notable advance since 2009: the completion of the first appropriately designed black-box study of firearms. The work was commissioned and funded by the Defense Department’s Forensic Science Center and was conducted by an independent testing lab (the Ames Laboratory, a Department of Energy national laboratory affiliated with Iowa State University). The false-positive rate was estimated at 1 in 66, with a confidence bound indicating that the rate could be as high as 1 in 46. While the study is available as a report to the Federal government, it has not been published in a scientific journal.

The scientific criteria for foundational validity require that there be more than one such study, to demonstrate reproducibility, and that studies should ideally be published in the peer-reviewed scientific literature. Accordingly, the current evidence still falls short of the scientific criteria for foundational validity.
Whether firearms analysis should be deemed admissible based on current evidence is a decision that belongs to the courts. If firearms analysis is allowed in court, the scientific criteria for validity as applied should be understood to require clearly reporting the error rates seen in the one appropriately designed black-box study. Claims of higher accuracy are not scientifically justified at present.

Validity as applied would also require, from a scientific standpoint, that an expert testifying on firearms analysis (1) has undergone rigorous proficiency testing on a large number of test problems to measure his or her accuracy and discloses the results of the proficiency testing and (2) discloses whether, when performing the examination, he or she was aware of any other facts of the case that might influence the conclusion.

Concerning the path forward, with firearms analysis as with latent fingerprint analysis, two directions are available for strengthening the scientific underpinnings of the discipline. The first is to improve firearms analysis as a subjective method, which would require additional black-box studies to assess scientific validity and reliability and more rigorous proficiency testing of examiners, using problems that are appropriately challenging and publically disclosed after the test.

The second direction, as with latent print analysis, is to convert firearms analysis from a subjective method to an objective method. This would involve developing and testing image-analysis algorithms for comparing the similarity of tool marks on bullets. There have already been encouraging steps toward this goal. The same tremendous progress over the past decade in image analysis that gives us reason to expect early achievement of fully automated latent print analysis is cause for optimism that fully automated firearms analysis may be possible in the near future. Efforts in this direction are currently hampered, however, by lack of access to realistically large and complex databases that can be used to continue development of these methods and validate initial proposals.

NIST, in coordination with the FBI Laboratory, should play a leadership role in propelling the needed transformation by creating and disseminating appropriate large datasets. These agencies should also provide grants and contracts to support work—and systematic processes to evaluate methods. In particular, we believe that “prize” competitions—based on large, publicly available collections of images—could attract significant interest from academia and industry.

Footwear Analysis

Footwear analysis is a process that typically involves comparing a known object, such as a shoe, to a complete or partial impression found at a crime scene, to assess whether the object is likely to be the source of the impression. The process proceeds in a stepwise manner, beginning with a comparison of “class characteristics” (such as design, physical size, and general wear) and then moving to “identifying characteristics” or “randomly acquired characteristics” (such as marks on a shoe caused by cuts, nicks, and gouges in the course of use).

PCAST has not addressed the question of whether examiners can reliably determine class characteristics—for example, whether a particular shoeprint was made by a size 12 shoe of a particular make. While it is important that studies be undertaken to estimate the reliability of footwear analysis aimed at determining class characteristics, PCAST chose not to focus on this aspect of footwear examination because it is not inherently a
challenging measurement problem to determine class characteristics, to estimate the frequency of shoes having a particular class characteristic, or (for jurors) to understand the nature of the features in question.

Instead, PCAST focused on the reliability of conclusions that an impression was likely to have come from a specific piece of footwear. This is a much harder problem because it requires knowing how accurately examiners can identify specific features shared between a shoe and an impression, how often they fail to identify features that would distinguish them, and what probative value should be ascribed to a particular “randomly acquired characteristic.”

PCAST finds that there are no appropriate black-box studies to support the foundational validity of footwear analysis to associate shoeprints with particular shoes based on specific identifying marks. Such associations are unsupported by any meaningful evidence or estimates of their accuracy and thus are not scientifically valid.

Hair Analysis

Forensic hair analysis is a process by which examiners compare microscopic features of hair to determine whether a particular person may be the source of a questioned hair. As PCAST was completing this report, the Department of Justice released for comment proposed guidelines concerning testimony on hair examination, including a supporting document addressing the validity and reliability of the discipline. While PCAST has not performed the sort of in-depth evaluation for the hair-analysis discipline that we did for other feature-comparison disciplines discussed here, we undertook a review of the DOJ’s supporting document in order to shed further light on the standards for conducting a scientific evaluation of a forensic feature-comparison discipline.

The document states that “microscopic hair comparison has been demonstrated to be a valid and reliable scientific methodology,” while noting that “microscopic hair comparisons alone cannot lead to personal identification and it is crucial that this limitation be conveyed both in the written report and in testimony.” In support of its conclusion that hair examination is valid and reliable, however, the document discusses only a handful of studies of human hair comparison, from the 1970s and 1980s. The supporting documents fail to note that subsequent studies found substantial flaws in the methodology and results of the key papers. PCAST’s own review of the cited papers finds that these studies do not establish the foundational validity and reliability of hair analysis.

The DOJ’s supporting document also cites a 2002 FBI study that used mitochondrial DNA analysis to re-examine 170 samples from previous cases in which the FBI Laboratory had performed microscopic hair examination. But that study’s key conclusion does not support the conclusion that hair analysis is a “valid and reliable scientific methodology.” The FBI authors actually found that, in 9 of 80 cases (11 percent) the FBI Laboratory had found the hairs to be microscopically indistinguishable, the DNA analysis showed that the hairs actually came from different individuals.

These shortcomings illustrate both the difficulty of these scientific evaluations and the reason they are best carried out by a science-based agency that is not itself involved in the application of forensic science within the
legal system. They also underscore why it is important that quantitative information about the reliability of methods (e.g., the frequency of false associations in hair analysis) be stated clearly in expert testimony.

Closing Observations on the Seven Evaluations

Although we have undertaken detailed evaluations of only six specific methods—and a review of an evaluation by others of a seventh—our approach could be applied to assess the foundational validity and validity as applied of any forensic feature-comparison method, including traditional forensic disciplines as well as methods yet to be developed (such as microbiome analysis or internet-browsing patterns).

We note, finally, that the evaluation of scientific validity is necessarily based on the available scientific evidence at a point in time. Some methods that have not been shown to be foundationally valid may ultimately be found to be reliable, although significant modifications to the methods may be required to achieve this goal. Other methods may not be salvageable, as was the case with compositional bullet lead analysis and is likely the case with bitemarks. Still others may be subsumed by different but more reliable methods, much as DNA analysis has replaced other methods in some instances.

Recommendations to NIST and OSTP

Recommendation 1. Assessment of foundational validity

It is important that scientific evaluations of the foundational validity be conducted, on an ongoing basis, to assess the foundational validity of current and newly developed forensic feature-comparison technologies. To ensure the scientific judgments are unbiased and independent, such evaluations should be conducted by an agency which has no stake in the outcome.

(A) The National Institute of Standards and Technology (NIST) should perform such evaluations and should issue an annual public report evaluating the foundational validity of key forensic feature-comparison methods.

(i) The evaluations should (a) assess whether each method reviewed has been adequately defined and whether its foundational validity has been adequately established and its level of accuracy estimated based on empirical evidence; (b) be based on studies published in the scientific literature by the laboratories and agencies in the U.S. and in other countries, as well as any work conducted by NIST’s own staff and grantees; (c) as a minimum, produce assessments along the lines of those in this report, updated as appropriate; and (d) be conducted under the auspices of NIST, with additional expertise as deemed necessary from experts outside forensic science.

(ii) NIST should establish an advisory committee of experimental and statistical scientists from outside the forensic science community to provide advice concerning the evaluations and to ensure that they are rigorous and independent. The members of the advisory committee should be selected jointly by NIST and the Office of Science and Technology Policy.
(iii) NIST should prioritize forensic feature-comparison methods that are most in need of evaluation, including those currently in use and in late-stage development, based on input from the Department of Justice and the scientific community.

(iv) Where NIST assesses that a method has been established as foundationally valid, it should (a) indicate appropriate estimates of error rates based on foundational studies and (b) identify any issues relevant to validity as applied.

(v) Where NIST assesses that a method has not been established as foundationally valid, it should suggest what steps, if any, could be taken to establish the method’s validity.

(vi) NIST should not have regulatory responsibilities with respect to forensic science.

(vii) NIST should encourage one or more leading scientific journals outside the forensic community to develop mechanisms to promote the rigorous peer review and publication of papers addressing the foundational validity of forensic feature-comparison methods.

(B) The President should request and Congress should provide increased appropriations to NIST of (a) $4 million to support the evaluation activities described above and (b) $10 million to support increased research activities in forensic science, including on complex DNA mixtures, latent fingerprints, voice/speaker recognition, and face/iris biometrics.

Recommendation 2. Development of objective methods for DNA analysis of complex mixture samples, latent fingerprint analysis, and firearms analysis

The National Institute of Standards and Technology (NIST) should take a leadership role in transforming three important feature-comparison methods that are currently subjective—latent fingerprint analysis, firearms analysis, and, under some circumstances, DNA analysis of complex mixtures—into objective methods.

(A) NIST should coordinate these efforts with the Federal Bureau of Investigation Laboratory, the Defense Forensic Science Center, the National Institute of Justice, and other relevant agencies.

(B) These efforts should include (i) the creation and dissemination of large datasets and test materials to support the development and testing of methods by both companies and academic researchers, (ii) grant and contract support, and (iii) sponsoring processes, such as prize competitions, to evaluate methods.

Recommendation 3. Improving the Organization for Scientific Area Committees Process

(A) The National Institute of Standards and Technology (NIST) should improve the Organization for Scientific Area Committees (OSAC), which was established to develop and promulgate standards and guidelines to improve best practices in the forensic science community.

(i) NIST should establish a Metrology Resource Committee, composed of metrologists, statisticians, and other scientists from outside the forensic-science community. A representative of the Metrology Resource
Committee should serve on each of the Scientific Area Committees (SACs) to provide direct guidance on the application of measurement and statistical principles to the developing documentary standards.

(ii) The Metrology Resource Committee, as a whole, should review and publically approve or disapprove all standards proposed by the Scientific Area Committees before they are transmitted to the Forensic Science Standards Board.

(B) NIST should ensure that the content of OSAC-registered standards and guidelines are freely available to any party that may desire them in connection with a legal case or for evaluation and research, including by aligning with the policies related to reasonable availability of standards in the Office of Management and Budget Circular A-119, Federal Participation in the Development and Use of Voluntary Consensus Standards and Conformity Assessment Activities and the Office of the Federal Register, IBR (incorporation by reference) Handbook.

Recommendation 4. R&D strategy for forensic science

(A) The Office of Science and Technology Policy (OSTP) should coordinate the creation of a national forensic science research and development strategy. The strategy should address plans and funding needs for:

(i) major expansion and strengthening of the academic research community working on forensic sciences, including substantially increased funding for both research and training;

(ii) studies of foundational validity of forensic feature-comparison methods;

(iii) improvement of current forensic methods, including converting subjective methods into objective methods, and development of new forensic methods;

(iv) development of forensic feature databases, with adequate privacy protections, that can be used in research;

(v) bridging the gap between research scientists and forensic practitioners; and

(vi) oversight and regular review of forensic-science research.

(B) In preparing the strategy, OSTP should seek input from appropriate Federal agencies, including especially the Department of Justice, Department of Defense, National Science Foundation, and National Institute of Standards and Technology; Federal and State forensic science practitioners; forensic science and non-forensic science researchers; and other stakeholders.
Recommendation to the FBI Laboratory

Recommendation 5. Expanded forensic-science agenda at the Federal Bureau of Investigation Laboratory

(A) Research programs. The Federal Bureau of Investigation (FBI) Laboratory should undertake a vigorous research program to improve forensic science, building on its recent important work on latent fingerprint analysis. The program should include:

(i) conducting studies on the reliability of feature-comparison methods, in conjunction with independent third parties without a stake in the outcome;

(ii) developing new approaches to improve reliability of feature-comparison methods;

(iii) expanding collaborative programs with external scientists; and

(iv) ensuring that external scientists have appropriate access to datasets and sample collections, so that they can carry out independent studies.

(B) Black-box studies. Drawing on its expertise in forensic science research, the FBI Laboratory should assist in the design and execution of additional empirical ‘black-box’ studies for subjective methods, including for latent fingerprint analysis and firearms analysis. These studies should be conducted by or in conjunction with independent third parties with no stake in the outcome.

(C) Development of objective methods. The FBI Laboratory should work with the National Institute of Standards and Technology to transform three important feature-comparison methods that are currently subjective—latent fingerprint analysis, firearm analysis, and, under some circumstances, DNA analysis of complex mixtures—into objective methods. These efforts should include (i) the creation and dissemination of large datasets to support the development and testing of methods by both companies and academic researchers, (ii) grant and contract support, and (iii) sponsoring prize competitions to evaluate methods.

(D) Proficiency testing. The FBI Laboratory, should promote increased rigor in proficiency testing by (i) within the next four years, instituting routine blind proficiency testing within the flow of casework in its own laboratory, (ii) assisting other Federal, State, and local laboratories in doing so as well, and (iii) encouraging routine access to and evaluation of the tests used in commercial proficiency testing.

(E) Latent fingerprint analysis. The FBI Laboratory should vigorously promote the adoption, by all laboratories that perform latent fingerprint analysis, of rules requiring a “linear Analysis, Comparison, Evaluation” process—whereby examiners must complete and document their analysis of a latent fingerprint before looking at any known fingerprint and should separately document any additional data used during comparison and evaluation.
(F) Transparency concerning quality issues in casework. The FBI Laboratory, as well as other Federal forensic laboratories, should regularly and publicly report quality issues in casework (in a manner similar to the practices employed by the Netherlands Forensic Institute, described in Chapter 5), as a means to improve quality and promote transparency.

(G) Budget. The President should request and Congress should provide increased appropriations to the FBI to restore the FBI Laboratory’s budget for forensic science research activities from its current level to $30 million and should evaluate the need for increased funding for other forensic-science research activities in the Department of Justice.

Recommendations to the Attorney General

Recommendation 6. Use of feature-comparison methods in Federal prosecutions

(A) The Attorney General should direct attorneys appearing on behalf of the Department of Justice (DOJ) to ensure expert testimony in court about forensic feature-comparison methods meets the scientific standards for scientific validity.

While pretrial investigations may draw on a wider range of methods, expert testimony in court about forensic feature-comparison methods in criminal cases—which can be highly influential and has led to many wrongful convictions—must meet a higher standard. In particular, attorneys appearing on behalf of the DOJ should ensure that:

(i) the forensic feature-comparison methods upon which testimony is based have been established to be foundationally valid with a level of accuracy suitable to their intended application, as shown by appropriate empirical studies and consistency with evaluations by the National Institute of Standards and Technology (NIST), where available; and

(ii) the testimony is scientifically valid, with the expert’s statements concerning the accuracy of methods and the probative value of proposed identifications being constrained by the empirically supported evidence and not implying a higher degree of certainty.

(B) DOJ should undertake an initial review, with assistance from NIST, of subjective feature-comparison methods used by DOJ to identify which methods (beyond those reviewed in this report) lack appropriate black-box studies necessary to assess foundational validity. Because such subjective methods are presumptively not established to be foundationally valid, DOJ should evaluate whether it is appropriate to present in court conclusions based on such methods.

(C) Where relevant methods have not yet been established to be foundationally valid, DOJ should encourage and provide support for appropriate black-box studies to assess foundational validity and measure reliability. The design and execution of these studies should be conducted by or in conjunction with independent third parties with no stake in the outcome.
Recommendation 7. Department of Justice guidelines on expert testimony

(A) The Attorney General should revise and reissue for public comment the Department of Justice’s (DOJ) proposed “Uniform Language for Testimony and Reports” and supporting documents to bring them into alignment with scientific standards for scientific validity.

(B) The Attorney General should issue instructions directing that:

(i) Where empirical studies and/or statistical models exist to shed light on the accuracy of a forensic feature-comparison method, an examiner should provide quantitative information about error rates, in accordance with guidelines to be established by DOJ and the National Institute of Standards and Technology, based on advice from the scientific community.

(ii) Where there are not adequate empirical studies and/or statistical models to provide meaningful information about the accuracy of a forensic feature-comparison method, DOJ attorneys and examiners should not offer testimony based on the method. If it is necessary to provide testimony concerning the method, they should clearly acknowledge to courts the lack of such evidence.

(iii) In testimony, examiners should always state clearly that errors can and do occur, due both to similarities between features and to human mistakes in the laboratory.

Recommendation to the Judiciary

Recommendation 8. Scientific validity as a foundation for expert testimony

(A) When deciding the admissibility of expert testimony, Federal judges should take into account the appropriate scientific criteria for assessing scientific validity including:

(i) **foundational validity**, with respect to the requirement under Rule 702(c) that testimony is the product of reliable principles and methods; and

(ii) **validity as applied**, with respect to requirement under Rule 702(d) that an expert has reliably applied the principles and methods to the facts of the case.

These scientific criteria are described in Finding 1.

(B) Federal judges, when permitting an expert to testify about a foundationally valid feature-comparison method, should ensure that testimony about the accuracy of the method and the probative value of proposed identifications is scientifically valid in that it is limited to what the empirical evidence supports. Statements suggesting or implying greater certainty are not scientifically valid and should not be permitted. In particular, courts should never permit scientifically indefensible claims such as: “zero,” “vanishingly small,” “essentially zero,” “negligible,” “minimal,” or “microscopic” error rates; “100 percent certainty” or proof “to a reasonable degree of scientific certainty;” identification “to the exclusion of all other sources;” or a chance of error so remote as to be a “practical impossibility.”
(C) To assist judges, the Judicial Conference of the United States, through its Standing Advisory Committee on the Federal Rules of Evidence, should prepare, with advice from the scientific community, a best practices manual and an Advisory Committee note, providing guidance to Federal judges concerning the admissibility under Rule 702 of expert testimony based on forensic feature-comparison methods.

(D) To assist judges, the Federal Judicial Center should develop programs concerning the scientific criteria for scientific validity of forensic feature-comparison methods.
1. Introduction

“Forensic science” has been defined as the application of scientific or technical practices to the recognition, collection, analysis, and interpretation of evidence for criminal and civil law or regulatory issues. The forensic sciences encompass a broad range of disciplines, each with its own set of technologies and practices. The National Institute of Justice (NIJ) divides those disciplines into twelve categories: general toxicology; firearms and toolmarks; questioned documents; trace evidence (such as hair and fiber analysis); controlled substances; biological/serology screening (including DNA analysis); fire debris/arson analysis; impression evidence; blood pattern evidence; crime scene investigation; medicolegal death investigation; and digital evidence. In the years ahead, science and technology will likely offer additional powerful tools for the forensic domain—perhaps the ability to compare populations of bacteria in the gut or patterns of search on the Internet.

Historically, forensic science has been used primarily in two phases of the criminal-justice process: (1) investigation, which seeks to identify the likely perpetrator of a crime, and (2) prosecution, which seeks to prove the guilt of a defendant beyond a reasonable doubt. (In recent years, forensic science—particularly DNA analysis—has also come into wide use for challenging past convictions.) Importantly, the investigative and prosecutorial phases involve different standards for the use of forensic science and other investigative tools. In investigations, insights and information may come from both well-established science and exploratory approaches. In the prosecution phase, forensic science must satisfy a higher standard. Specifically, the Federal Rules of Evidence require that expert testimony be based, among other things, on “reliable principles and methods” that have been “reliably applied” to the facts of the case. And, the Supreme Court has stated that judges must determine “whether the reasoning or methodology underlying the testimony is scientifically valid.”

This is where legal standards and scientific standards intersect. Judges’ decisions about the admissibility of scientific evidence rest solely on legal standards; they are exclusively the province of the courts. But, the overarching subject of the judges’ inquiry is scientific validity. It is the proper province of the scientific community to provide guidance concerning scientific standards for scientific validity.

7 While investigative methods need not meet the standards of reliability required under the Federal Rules of Evidence, they should be based in sound scientific principles and practices so as to avoid false accusations.
8 Fed. R. Evid. 702.
10 Daubert, at 594.
11 In this report, PCAST addresses solely the scientific standards for scientific validity and reliability. We do not offer opinions concerning legal standards.
A focus on the scientific side of this intersection is timely because it has become increasingly clear in recent years that lack of rigor in the assessment of the scientific validity of forensic evidence is not just a hypothetical problem but a real and significant weakness in the judicial system. As recounted in Chapter 2, reviews by competent bodies of the scientific underpinnings of forensic disciplines and the use in courtrooms of evidence based on those disciplines have revealed a dismaying frequency of instances of use of forensic evidence that do not pass an objective test of scientific validity.

The most comprehensive such review to date was conducted by a National Research Council (NRC) committee co-chaired by Judge Harry Edwards of the U.S. Court of Appeals for the District of Columbia Circuit and Constantine Gatsonis, Director of the Center for Statistical Sciences at Brown University. Mandated by Congress in an appropriations bill signed into law in late 2005, the study launched in the fall of 2006 and the committee released its report in February 2009.12

The 2009 NRC report described a disturbing pattern of deficiencies common to many of the forensic methods routinely used in the criminal justice system, most importantly a lack of rigorous and appropriate studies establishing their scientific validity, concluding that “much forensic evidence—including, for example, bitemarks and firearm and toolmark identifications—is introduced in criminal trials without any meaningful scientific validation, determination of error rates, or reliability testing to explain the limits of the discipline.”13

In 2013, after prolonged discussion of the NRC report’s findings and recommendations inside and outside the Federal government, the Department of Justice (DOJ)—in collaboration with the National Institute of Standards and Technology (NIST)—established the National Commission on Forensic Science (NCFS) as a Federal advisory body charged with providing forensic-science guidance and policy recommendations to the Attorney General. Co-chaired by the Deputy Attorney General and the Director of NIST, the NCFS’s 32 members include eight academic scientists and five other science Ph.D.s; the other members include judges, attorneys, and forensic practitioners. To strengthen forensic science more generally, in 2014 NIST established the Organization for Scientific Area Committees for Forensic Science (OSAC) to “coordinate development of standards and guidelines...to improve quality and consistency of work in the forensic science community.”14

In September 2015, President Obama asked his Council of Advisors on Science and Technology (PCAST) to explore, in light of the work being done by the NCSF and OSAC, what additional efforts could contribute to strengthening the forensic-science disciplines and ensuring the scientific reliability of forensic evidence used in the Nation’s legal system. After review of the ongoing activities and the relevant scientific and legal literatures—including particularly the scientific and legal assessments in the 2009 NRC report—PCAST concluded that there are two important gaps: (1) the need for clarity on the scientific meaning of “reliable principles and methods” and “scientific validity” in the context of certain forensic disciplines, and (2) the need to evaluate

13 Ibid., 107-8.
specific forensic methods to determine whether they have been scientifically established to be valid and reliable.

Within the broad span of forensic disciplines, we chose to narrow our focus to techniques that we refer to here as forensic “feature-comparison” methods (see Box 1). While one motivation for this narrowing was to make our task tractable within the limits of available time and resources, we chose this particular class of methods because: (1) they are commonly used in criminal cases; (2) they have attracted a high degree of concern with respect to validity (e.g., the 2009 NRC report); and (3) they all belong to the same broad scientific discipline, metrology, which is “the science of measurement and its application,” in this case to measuring and comparing features.

BOX 1. Forensic feature-comparison methods

PCAST uses the term “forensic feature-comparison methods” to refer to the wide variety of methods that aim to determine whether an evidentiary sample (e.g., from a crime scene) is or is not associated with a potential source sample (e.g., from a suspect) based on the presence of similar patterns, impressions, features, or characteristics in the sample and the source. Examples include the analyses of DNA, hair, latent fingerprints, firearms and spent ammunition, tool and toolmarks, shoeprints and tire tracks, bitemarks, and handwriting.

PCAST began this study by forming a working group of six of its members to gather information for consideration. To educate itself about factual matters relating to the interaction between science and law, PCAST consulted with a panel of Senior Advisors (listed in the front matter) comprising nine current or former Federal judges, one former U.S. Solicitor General and State supreme court justice, two law school deans, and two statisticians, who have expertise in this domain. PCAST also sought input from a diverse group of additional experts and stakeholders, including forensic scientists and practitioners, judges, prosecutors, defense attorneys, criminal justice reform advocates, statisticians, academic researchers, and Federal agency representatives (see Appendix B). Input was gathered through multiple in-person meetings and conference calls, including a session

15 PCAST notes that there are issues related to the scientific validity of other types of forensic evidence that are beyond the scope of this report but require urgent attention—including notably arson science and abusive head trauma commonly referred to as “Shaken Baby Syndrome.” In addition, a major area not addressed in this report is scientific methods for assessing causation—for example, whether exposure to substance was likely to have caused harm to an individual.

17 Two of the members have been involved with forensic science. PCAST Co-chair Eric Lander has served in various scientific roles (expert witness in People v. Castro 545 N.Y.S.2d 985 (Sup. Ct. 1989), a seminal case on the quality of DNA analysis discussed on p. 25; court’s witness in U.S. v. Yee, 134 F.R.D. 161 in 1991; member of the NRC panel on forensic DNA analysis in 1992; scientific co-author with a forensic scientist from the FBI Laboratory in 1994; and a member of the Board of Directors of the Innocence Project from 2004 to the present). All of these roles have been unremunerated. PCAST member S. James Gates, Jr. has been a member, since its inception, of the National Commission on Forensic Science.
at a meeting of PCAST on January 15, 2016. PCAST also took the unusual step of initiating an online, open solicitation to broaden input, in particular from the forensic-science practitioner community; more than 70 responses were received.18

PCAST also shared a draft of this report with NIST and DOJ, which provided detailed and helpful comments that were carefully considered in revising the report.

PCAST expresses its gratitude to all those who shared their views. Their willingness to engage with PCAST does not imply endorsement of the views expressed in the report. Responsibility for the opinions, findings and recommendations expressed in this report and for any errors of fact or interpretation rests solely with PCAST.

The remainder of our report is organized as follows.

• Chapter 2 provides a brief overview of the findings of other studies relating to forensic practice and testimony based on it, and it reviews, as well, Federal actions currently underway to strengthen forensic science.

• Chapter 3 briefly reviews the role of scientific validity within the legal system. It describes the important distinction between legal standards and scientific standards.

• Chapter 4 then describes the scientific standards for “reliable principles and methods” and “scientific validity” as they apply to forensic feature-comparison methods and offers clear criteria that could be readily applied by courts.

• Chapter 5 illustrates the application of the indicated criteria by using them to evaluate the scientific validity of six important “feature-comparison” methods: DNA analysis of single-source and simple-mixture samples, DNA analysis of complex mixtures, bitemark analysis, latent fingerprint analysis, firearms analysis, and footwear analysis. We also discuss an evaluation by others of a seventh method, hair analysis.

• In Chapters 6–9, we offer recommendations, based on the findings of Chapters 4–5, concerning Federal actions that could be taken to strengthen forensic science and promote its more rigorous use in the courtroom.

18 See: www.whitehouse.gov/sites/default/files/microsites/ostp/PCAST/pcast_forensics_request_for_information.pdf.
2. Previous Work on Validity of Forensic-Science Methods

Developments over the past two decades—including the exoneration of defendants who had been wrongfully convicted based in part on forensic-science evidence, a variety of studies of the scientific underpinnings of the forensic disciplines, reviews of expert testimony based on forensic findings, and scandals in state crime laboratories—have called increasing attention to the question of the validity and reliability of some important forensic methods evidence and testimony based upon them. (For definitions of key terms such as scientific validity and reliability, see Box 1 on page 47-8.)

In this chapter, we briefly review this history to inform our assessment of the current state of forensic science methods and their validity and the path forward.19

2.1 DNA Evidence and Wrongful Convictions

Ironically, it was the emergence and maturation of a new forensic science, DNA analysis, that first led to serious questioning of the validity of many of the traditional forensic disciplines. When defendants convicted with the help of forensic evidence from those traditional disciplines began to be exonerated on the basis of persuasive DNA comparisons deeper inquiry into scientific validity began. How this came to pass provides useful context for our inquiry here.

When DNA evidence was first introduced in the courts, beginning in the late 1980s, it was initially hailed as infallible. But the methods used in early cases turned out to be unreliable: testing labs lacked validated and consistently-applied procedures for defining DNA patterns from samples, for declaring whether two patterns matched within a given tolerance, and for determining the probability of such matches arising by chance in the population.20

When DNA evidence was declared inadmissible in People v. Castro, a New York case in 1989, scientists—including at the U.S. National Academy of Sciences and the Federal Bureau of Investigation (FBI)—came together

to promote the development of reliable principles and methods that have enabled DNA analysis of single-source samples to become the “gold standard” of forensic science for both investigation and prosecution.21

Both the initial recognition of serious problems and the subsequent development of reliable procedures were aided by the existence of a robust community of molecular biologists who used DNA analysis in non-forensic applications, such as in biomedical and agricultural sciences. They were also aided by judges who recognized that this powerful forensic method should only be admitted as courtroom evidence once its reliability was properly established.

Once DNA analysis became a reliable methodology, the power of the technology—including its ability to analyze small samples and to distinguish between individuals—made it possible not only to identify and convict true perpetrators but also to clear mistakenly accused suspects before prosecution and to re-examine a number of past convictions. Reviews by the National Institute of Justice (NIJ)22 and others have found that DNA testing during the course of investigations has cleared tens of thousands of suspects. DNA-based re-examination of past cases, moreover, has led so far to the exoneration of 342 defendants, including 20 who had been sentenced to death, and to the identification of 147 real perpetrators.23

Independent reviews of these cases have revealed that many relied in part on faulty expert testimony from forensic scientists who had told juries that similar features in a pair of samples taken from a suspect and from a crime scene (e.g., hair, bullets, bitemarks, tire or shoe treads, or other items) implicated defendants in a crime with a high degree of certainty.24 According to the reviews, these errors were not simply a matter of individual examiners testifying to conclusions that turned out to be incorrect; rather, they reflected a systemic problem—the testimony was based on methods and included claims of accuracy that were cloaked in purported scientific respectability but actually had never been subjected to meaningful scientific scrutiny.25

21 People v. Castro 545 N.Y.S.2d 985 (Sup. Ct. 1989). The case, in which a janitor was charged with the murder of a woman in the Bronx, was among the first criminal cases involving DNA analysis in the United States. The court held a 15-week-long pretrial hearing about the admissibility of the DNA evidence. By the end of the hearing, the independent experts for both the defense and prosecution unanimously agreed that the DNA evidence presented was not scientifically reliable—and the judge ruled the evidence inadmissible. See: Lander, E.S. "DNA fingerprinting on trial." Nature, Vol. 339 (1989): 501-5. These events eventually led to two NRC reports on forensic DNA analysis, in 1992 and 1996, and to the founding of the Innocence Project (www.innocenceproject.org).

2.2 Studies of Specific Forensic-Science Methods and Laboratory Practices

The questions that DNA analysis had raised about the scientific validity of traditional forensic disciplines and testimony based on them led, naturally, to increased efforts to test empirically the reliability of the methods that those disciplines employed. Scrutiny was directed, similarly, to the practices by which forensic evidence is collected, stored, and analyzed in crime laboratories around the country. The FBI Laboratory, widely regarded as one of the best in the country, played an important role in the latter investigations, re-assessing its own practices as well as those of others. In what follows we summarize some of the key findings of the studies of methods and practices that ensued in the case of the “comparison” disciplines that are the focus in this report.

Bullet Lead Examination

From the 1960s until 2005, the FBI used compositional analysis of bullet lead as a forensic tool of analysis to identify the source of bullets. Yet, an NRC report commissioned by the FBI and released in 2004 challenged the foundational validity of identifications based on the discipline. The technique involved comparing the quantity of various elements in bullets found at a crime scene with that of unused bullets to determine whether the bullets came from the same box of ammunition. The 2004 NRC report found that there is no scientific basis for making such a determination. While the method for determining the concentrations of different elements within a bullet was found to be reliable, the report found there was insufficient research and data to support drawing a connection, based on compositional similarity between a particular bullet and a given batch of ammunition, which is usually the relevant question in a criminal case. In 2005, the FBI announced that it would discontinue the practice of bullet lead examinations, noting that while it “firmly supports the scientific foundation of bullet lead analysis,” the manufacturing and distribution of bullets was too variable to make the matching reliable.

26 National Research Council. Forensic Analysis: Weighing Bullet Lead Evidence. The National Academies Press. Washington DC. (2004). Lead bullet examination, also known as Compositional Analysis of Bullet Lead (CABL), involves comparing the elemental composition of bullets found at a crime scene with unused cartridges in the possession of a suspect. This technique assumes that (1) the molten source used to produce a single “lot” of bullets has a uniform composition throughout, (2) no two molten sources have the same composition, and (3) bullets with different compositions are not mixed during the manufacturing or shipping processes. However, in practice, this is not the case. The 2004 NRC report found that compositionally indistinguishable volumes of lead could produce small lots of bullets—on the order of 12,000 bullets—or large lots—with more than 35 million bullets. The report also found no assurance that indistinguishable volumes of lead could not occur at different times and places. Neither scientists nor bullet manufacturers are able to definitively attest to the significance of an association made between bullets in the course of a bullet lead examination. The most that one can say is that bullets that are indistinguishable by CABL could have come from the same source.

Latent Fingerprints

In 2005, an international committee established by the FBI released a report concerning flaws in the FBI’s practices for fingerprint identification that had led to a prominent misidentification. Based almost entirely on a latent fingerprint recovered from the 2004 bombing of the Madrid commuter train system, the FBI erroneously detained an American in Portland, Oregon and held him for two weeks as a material witness. An FBI examiner concluded the fingerprints matched with “100 percent certainty,” although Spanish authorities were unable to confirm the match. The review committee concluded that the FBI’s misidentification had occurred primarily as a result of “confirmation bias.” Similarly, a report by the DOJ’s Office of the Inspector General highlighted “reverse reasoning” from the known print to the latent image that led to an exaggerated focus on apparent similarities and inadequate attention to differences between the images.

Hair Analysis

In 2002, FBI scientists used mitochondrial DNA sequencing to re-examine 170 microscopic hair comparisons that the agency’s scientists had performed in criminal cases. The DNA analysis showed that, in 11 percent of cases in which the FBI examiners had found the hair samples to match microscopically, DNA testing of the samples revealed they actually came from different individuals. These false associations may not have been the result of a failure of the examiner to perform the analysis correctly; instead, the characteristics could have just happened to have been shared by chance. The study showed that the power of microscopic hair comparison to distinguish between samples from different sources was much lower than previously assumed. (For example, earlier studies suggested that the false positive rate for of hair analysis is in the range of 1 in 40,000.)

Bitemarks

A 2010 study of experimentally created bitemarks produced by known biters found that skin deformation distorts bitemarks so substantially and so variably that current procedures for comparing bitemarks are unable to reliably exclude or include a suspect as a potential biter. (“The data derived showed no correlation and was

31 Specifically, similarities between the two prints, combined with the inherent pressure of working on an extremely high-profile case, influenced the initial examiner’s judgment: ambiguous characteristics were interpreted as points of similarity and differences between the two prints were explained away. A second examiner, not shielded from the first examiner’s conclusions, simply confirmed the first examiner’s results. See: Stacey, R.B. “Report on the erroneous fingerprint individualization in the Madrid train bombing case.” *Forensic Science Communications*, Vol. 7, No. 1 (2005).
34 Gaudette, B. D., and E.S. Keeping. “An attempt at determining probabilities in human scalp hair comparisons.” *Journal of Forensic Sciences*, Vol. 19 (1975): 599-606. This study was recently cited by DOJ to support the assertion that hair analysis is a valid and reliable scientific methodology. www.justice.gov/dag/file/877741/download. The topic of hair analysis is discussed in Chapter 5.
not reproducible, that is, the same dentition could not create a measurable impression that was consistent in all of the parameters in any of the test circumstances.\footnote{Bush, M.A., Cooper, H.I., and R.B. Dorion. “Inquiry into the scientific basis for bitemark profiling and arbitrary distortion compensation.” \textit{Journal of Forensic Sciences}, Vol. 55, No. 4 (2010): 976-83. See also Bush, M.A., Miller, R.G., Bush, P.J., and R.B. Dorion. “Biomechanical factors in human dermal bitemarks in a cadaver model.” \textit{Journal of Forensic Sciences}, Vol. 54, No. 1 (2009): 167-76.} A recent study by the American Board of Forensic Odontology also showed a disturbing lack of consistency in the way that forensic odontologists go about analyzing bitemarks, including even on deciding whether there was sufficient evidence to determine whether a photographed bitemark was a human bitemark.\footnote{Balko, R. “A bite mark matching advocacy group just conducted a study that discredits bite mark evidence.” \textit{Washington Post}, April 8, 2015. \url{www.washingtonpost.com/news/the-watch/wp/2015/04/08/a-bite-mark-matching-advocacy-group-just-conducted-a-study-that-discredits-bite-mark-evidence}; Adam J. Freeman & Iain A. Pretty, Construct Validity of Bitemark Assessments Using the ABO Bitemark Decision Tree, American Academy of Forensic Sciences, Annual Meeting, Odontology Section, G14, February 2015 (data made available by the authors upon request).} In February 2016, following a six-month investigation, the Texas Forensic Science Commission unanimously recommended a moratorium on the use of bitemark identifications in criminal trials, concluding that the validity of the technique has not been scientifically established.\footnote{Texas Forensic Science Commission. “Forensic bitemark comparison complaint filed by National Innocence Project on behalf of Steven Mark Chaney – Final Report.” (2016). \url{www.fsc.texas.gov/sites/default/files/FinalBiteMarkReport.pdf}.}

These examples illustrate how several forensic feature-comparison methods that have been in wide use have nonetheless not been subjected to meaningful tests of scientific validity or measures of reliability.

\subsection*{2.3 Testimony Concerning Forensic Evidence}

Reviews of trial transcripts have found that expert witnesses have often overstated the probative value of their evidence, going far beyond what the relevant science can justify. For example, some examiners have testified:

examiner received a perfect score on a particular performance test involving a limited number of samples.39 Even highly automated tests do not have a zero error rate.40,41

- that they can “individualize” evidence—for example, using markings on a bullet to attribute it to a specific weapon “to the exclusion of every other firearm in the world”—an assertion that is not supportable by the relevant science.42

- that a result is true “to a reasonable degree of scientific certainty.” This phrase has no generally accepted meaning in science and is open to widely differing interpretations by different scientists.43 Moreover, the statement may be taken as implying certainty.

DOJ Review of Testimony on Hair Analysis

In 2012, the DOJ and FBI announced that they would initiate a formal review of testimony in more than 3,000 criminal cases involving microscopic hair analysis. Initial results of this unprecedented review, conducted in consultation with the Innocence Project and the National Association of Criminal Defense Lawyers, found that FBI examiners had provided scientifically invalid testimony in more than 95 percent of cases where examiner-provided testimony was used to inculpate a defendant at trial. These problems were systemic: 26 of the 28 FBI hair examiners who testified in the 328 cases provided scientifically invalid testimony.44,45

41 False positive results can arise from two sources: (1) similarity between two features that occur by chance and (2) human/technical failures. See discussion in Chapter 4, p. 50-1.
43 National Commission on Forensic Science, “Recommendations to the Attorney General Regarding Use of the Term ‘Reasonable Scientific Certainty’,” Approved March 22, 2016, available at: \textit{www.justice.gov/ncfs/file/839726/download}. The NCSF states that “forensic discipline conclusions are often testified to as being held ‘to a reasonable degree of scientific certainty’ or ‘to a reasonable degree of [discipline] certainty.’ These terms have no scientific meaning and may mislead factfinders about the level of objectivity involved in the analysis, its scientific reliability and limitations, and the ability of the analysis to reach a conclusion.”
45 The erroneous statements fell into three categories, in which the examiner: (1) stated or implied that evidentiary hair could be associated with a specific individual to the exclusion of all others; (2) assigned to the positive association a statistical weight or a probability that the evidentiary hair originated from a particular source; or (3) cited the number of cases worked in the lab and the number of successful matches to support a conclusion that an evidentiary hair belonged to a specific individual. Reimer, N.L. “The hair microscopy review project: An historic breakthrough for law enforcement and a daunting challenge for the defense bar.” \textit{The Champion}, (July 2013): 16. \textit{www.nacdl.org/champion.aspx?id=29488}.
The importance of the FBI’s hair analysis review was illustrated by the decision in January 2016 by Massachusetts Superior Court Judge Robert Kane to vacate the conviction of George Perrot, based in part on the FBI’s acknowledgment of errors in hair analysis.46

Expanded DOJ Review

In March 2016, DOJ announced its intention to expand its review of forensic testimony by the FBI Laboratory in closed criminal cases to additional forensic science methods. The review will provide the opportunity to assess the extent to which similar testimonial overstatement has occurred in other disciplines.47 DOJ plans to lay out a framework for auditing samples of testimony that came from FBI units handling additional kinds of feature-based evidence, such as tracing the impressions that guns leave on bullets, shoe treads, fibers, soil and other crime-scene evidence.

2.4 Cognitive Bias

In addition to the issues previously described, scientists have studied a subtler but equally important problem that affects the reliability of conclusions in many fields, including forensic science: cognitive bias. Cognitive bias refers to ways in which human perceptions and judgments can be shaped by factors other than those relevant to the decision at hand. It includes “contextual bias,” where individuals are influenced by irrelevant background information; “confirmation bias,” where individuals interpret information, or look for new evidence, in a way that conforms to their pre-existing beliefs or assumptions; and “avoidance of cognitive dissonance,” where individuals are reluctant to accept new information that is inconsistent with their tentative conclusion. The biomedical science community, for example, goes to great lengths to minimize cognitive bias by employing strict protocols, such as double-blinding in clinical trials.

Studies have demonstrated that cognitive bias may be a serious issue in forensic science. For example, a study by Itiel Dror and colleagues demonstrated that the judgment of latent fingerprint examiners can be influenced by knowledge about other forensic examiners’ decisions (a form of confirmation bias).48 These studies are discussed in more detail in Section 5.4. Similar studies have replicated these findings in other forensic domains, including DNA mixture interpretation, microscopic hair analysis, and fire investigation.49,50

Several strategies have been proposed for mitigating cognitive bias in forensic laboratories, including managing the flow of information in a crime laboratory to minimize exposure of the forensic analyst to irrelevant contextual information (such as confessions or eyewitness identification) and ensuring that examiners work in a linear fashion, documenting their finding about evidence from crime science before performing comparisons with samples from a suspect.\(^{51}\)

2.5 State of Forensic Science

The 2009 NRC study concluded that many of these difficulties with forensic science may stem from the historical reality that many methods were devised as rough heuristics to aid criminal investigations and were not grounded in the validation practices of scientific research.\(^{52}\) Although many forensic laboratories do now require newly-hired forensic science practitioners to have an undergraduate science degree, many practitioners in forensic laboratories do not have advanced degrees in a scientific discipline.\(^{53}\) In addition, until 2015, there were no Ph.D. programs specific to forensic science in the United States (although such programs exist in Europe).\(^{54}\) There has been very limited funding for forensic science research, especially to study the validity or reliability of these disciplines. Serious peer-reviewed forensic science journals focused on feature-comparison fields remain quite limited.

As the 2009 NRC study and others have noted, fundamentally, the forensic sciences do not yet have a well-developed “research culture.”\(^ {55}\) Importantly, a research culture includes the principles that (1) methods must be presumed to be unreliable until their foundational validity has been established based on empirical evidence and (2) even then, scientific questioning and review of methods must continue on an ongoing basis. Notably, some forensic practitioners espouse the notion that extensive “experience” in casework can substitute for empirical studies of scientific validity.\(^ {56}\) Casework is not scientifically valid research, and experience alone

\(^{56}\) See Section 4.7.
cannot establish scientific validity. In particular, one cannot reliably estimate error rates from casework because one typically does not have independent knowledge of the “ground truth” or “right answer.”

Beyond the foundational issue of scientific validity, most feature-comparison fields historically gave insufficient attention to the importance of blinding practitioners to potentially biasing information; developing objective measures of assessment and interpretation; paying careful attention to error rates and their measurement; and developing objective assessments of the meaning of an association between a sample and its potential source.

The 2009 NRC report stimulated some in the forensic science community to recognize these flaws. Some forensic scientists have embraced the need to place forensics on a solid scientific foundation and have undertaken initial efforts to do so.

2.6 State of Forensic Practice

Investigations of forensic practice have likewise unearthed problems stemming from the lack of a strong “quality culture.” Specifically, dozens of investigations of crime laboratories—primarily at the state and local level—have revealed repeated failures concerning the handling and processing of evidence and incorrect interpretation of forensic analysis results.

Various commentators have pointed out a fundamental issue that may underlie these serious problems: the fact that nearly all crime laboratories are closely tied to the prosecution in criminal cases. This structure undermines

57 See Section 4.7.
59 See Section 4.8.
60 A few examples of such investigations include: (1) a 2-year independent investigation of the Houston Police Department’s crime lab that resulted in the review of 3,500 cases (Final Report of the Independent Investigator for the Houston Police Department Crime Laboratory and Property Room, prepared by Michael R. Bromwich, June 13, 2007 (www.hpdlabinvestigation.org/reports/070613report.pdf)); (2) the investigation and closure of the Detroit Police Crime Lab’s firearms unit following the discovery of evidence contamination and failure to properly maintain testing equipment (see Bunkley, N. “Detroit police lab is closed after audit finds serious errors in many cases.” *New York Times*, September 25, 2008, www.nytimes.com/2008/09/26/us/26detroit.html?_r=0); (3) a 2010 investigation of North Carolina’s State Bureau of Investigation crime laboratory that found that agents consistently withheld exculpatory evidence or distorted evidence in more than 230 cases over a 16 year period (see Swecker, C., and M. Wolf, “An Independent Review of the SBI Forensic Laboratory” images.bimedia.net/documents/SBI+Report.pdf); and (4) a 2013 review of the New York City medical examiner’s office handling of DNA evidence in more than 800 rape cases (see State of New York, Office of the Inspector General. December 2013, www.ig.ny.gov/sites/default/files/pdfs/OCMEFinalReport.pdf). One analysis estimated that at least fifty major laboratories reported fraud by analysts, evidence destruction, failed proficiency tests, misrepresenting findings in testimony, or tampering with drugs between 2005 and 2011. Twenty-eight of these labs were nationally accredited. Memorandum from Marvin Schechter to New York State Commission on Forensic Science (March 25, 2011): 243-4 (see www.americanbar.org/content/dam/aba/administrative/legal_aid_indigent_defendants/lsl_sclaid_def_train_memo_schechter.authcheckdam.pdf).
the greater objectivity typically found in testing laboratories in other fields and creates situations where personnel may make errors due to subtle cognitive bias or overt pressure.

The 2009 NRC report recommended that all public forensic laboratories and facilities be removed from the administrative control of law enforcement agencies or prosecutors’ offices. For example, Houston—after disbanding its crime laboratory twice in three years—followed this recommendation and, despite significant political pushback, succeeded in transitioning the laboratory into an independent forensic science center.

2.7 National Research Council Report

The 2009 NRC report, *Strengthening Forensic Science in the United States: A Path Forward*, was the most comprehensive review to date of the forensic sciences in the United States. The report made clear that the types of problems, irregularities, and miscarriages of justice outlined in this report cannot simply be attributed to a handful of rogue analysts or underperforming laboratories. Instead, the report found the problems plaguing the forensic science community are systemic and pervasive—the result of factors including a high degree of fragmentation (including disparate and often inadequate training and educational requirements, resources, and capacities of laboratories); a lack of standardization of the disciplines, insufficient high-quality research and education; and a dearth of peer-reviewed studies establishing the scientific basis and validity of many routinely used forensic methods.

Shortcomings in the forensic sciences were especially prevalent among the feature-comparison disciplines. The 2009 NRC report found that many of these disciplines lacked well-defined systems for determining error rates and had not done studies to establish the uniqueness or relative rarity or commonality of the particular marks or features examined. In addition, proficiency testing, where it had been conducted, showed instances of poor performance by specific examiners. In short, the report concluded that “much forensic evidence—including, for example, bitemarks and firearm and toolmark identifications—is introduced in criminal trials without any...”

61 The 2009 NRC Report (pp. 24-5) states, “The best science is conducted in a scientific setting as opposed to a law enforcement setting. Because forensic scientists often are driven in their work by a need to answer a particular question related to the issues of a particular case, they sometimes face pressure to sacrifice appropriate methodology for the sake of expediency.” See also: Giannelli, P.G. “Independent crime laboratories: The problem of motivational and cognitive bias.” *Utah Law Review*, (2010): 247-66 and Thompson, S.G. *Cops in Lab Coats: Curbing Wrongful Convictions through Independent Forensic Laboratories*. Carolina Academic Press (2015).
63 The Houston Forensic Science Center opened in April 2014, replacing the former Houston Police Department Crime Laboratory. The Center operates as a “local government corporation” with its own directors, officers, and employees. The structure was intentionally designed to insulate the Center from undue influence by police, prosecutors, elected officials, or special interest groups. See: Thompson, S.G. *Cops in Lab Coats: Curbing Wrongful Convictions through Independent Forensic Laboratories*. Carolina Academic Press (2015): 214.
meaningful scientific validation, determination of error rates, or reliability testing to explain the limits of the discipline.”

The 2009 NRC report found that the problems plaguing the forensic sciences were so severe that they could only be addressed by “a national commitment to overhaul the current structure that supports the forensic science community in this country.” Underlying the report’s 13 core recommendations was a call for leadership at the highest levels of both Federal and State governments and the promotion and adoption of a long-term agenda to pull the forensic science enterprise up from its current weaknesses.

The 2009 NRC report called for studies to test whether various forensic methods are foundationally valid, including performing empirical tests of the accuracy of the results. It also called for the creation of a new, independent Federal agency to provide needed oversight of the forensic science system; standardization of terminology used in reporting and testifying about the results of forensic sciences; the removal of public forensic laboratories from the administrative control of law enforcement agencies; implementation of mandatory certification requirements for practitioners and mandatory accreditation programs for laboratories; research on human observer bias and sources of human error in forensic examinations; the development of tools for advancing measurement, validation, reliability, and proficiency testing in forensic science; and the strengthening and development of graduate and continuous education and training programs.

2.8 Recent Progress

In response to the 2009 NRC report, the Obama Administration initiated a series of reform efforts aimed at strengthening the forensic sciences, beginning with the creation in 2009 of a Subcommittee on Forensic Science of the National Science and Technology Council’s Committee on Science that was charged with considering how best to achieve the goals of the NRC report. The resulting activities are described in some detail below.

National Commission on Forensic Science

In 2013, the DOJ and NIST, with support from the White House, signed a Memorandum of Understanding that outlined a framework for cooperation and collaboration between the two agencies in support of efforts to strengthen forensic science. In 2013, DOJ established a National Commission on Forensic Science (NCFS), a Federal advisory committee reporting to the Attorney General. Co-chaired by the Deputy Attorney General and the Director of NIST, the NCFS’s 32 members include seven academic scientists and five other science Ph.D.s; the other members include judges, attorneys and forensic practitioners. It is charged with providing policy recommendations to the Attorney General. The NCFS issues formal recommendations to the Attorney General, as well as “views

documents” that reflect two-thirds majority view of NCFS but do not request specific action by the Attorney General. To date, the NCFS has issued ten recommendations concerning, among other things, accreditation of forensic laboratories and certification of forensic practitioners, advancing the interoperability of fingerprint information systems, development of root cause analysis protocols for forensic service providers, and enhancing communications among medical-examiner and coroner offices.67 To date, the Attorney General has formally adopted the first set of recommendations on accreditation68 and has directed the Department to begin to take steps toward addressing some of the other recommendations put forward to date.69

In 2014, NIST established the Organization of Scientific Area Committees (OSAC), a collaborative body of more than 600 volunteer members largely drawn from the forensic science community.70 OSAC was established to support the development of voluntary standards and guidelines for consideration by the forensic practitioner community.71 The structure consists of six Scientific Area Committees (SACs) and 25 subcommittees that work to develop standards, guidelines, and codes of practice for each of the forensic science disciplines and methodologies.72 Three overarching resource committees provide guidance on questions of law, human factors, and quality assurance. All documents developed by the SACs are approved by a Forensic Science Standards Board (FSSB), a component of the OSAC structure, for listing on the OSAC Registry of Approved Standards. OSAC is not a Federal advisory committee.

Federal Funding Of Research

The Federal government has also taken steps to address one factor contributing to the problems with forensic science—the lack of a robust and rigorous scientific research community in many disciplines in forensic science. While there are multiple reasons for the absence of such a research community, one reason is that, unlike most scientific disciplines, there has been too little funding to attract and sustain a substantial cadre of excellent scientists focused on fundamental research in forensic science.

The National Science Foundation (NSF) has recently begun efforts to help address this foundational shortcoming of forensic science. In 2013, NSF signaled its interest in this area and encouraged researchers to submit research proposals addressing fundamental questions that might advance knowledge and education in the forensic

67 For a full list of documents approved by NCFS, see www.justice.gov/ncfs/work-products-adopted-commission.
70 Members include forensic science practitioners and other experts who represent local, State, and Federal agencies; academia; and industry.
71 For more information see: www.nist.gov/forensics/osac.cfm.
72 The six Scientific Area Committees under OSAC are: Biology/DNA, Chemistry/Instrumental Analysis, Crime Scene/Death Investigation, Digital/Multimedia, and Physics/Pattern Interpretation (www.nist.gov/forensics/upload/OSAC-Block-Org-Chart-3-17-2015.pdf).
As a result of an interagency process led by OSTP and NSF, in collaboration with the National Institute of Justice (NIJ), invited proposals for the creation of new, multi-disciplinary research centers for funding in 2014. Based on our review of grant abstracts, PCAST estimates that NSF commits a total of approximately $4.5 million per year in support for extramural research projects on foundational forensic science.

NIST has also taken steps to address this issue by creating a new Forensic Science Center of Excellence, called the Center for Statistics and Applications in Forensic Evidence (CSAFE), that will focus its research efforts on improving the statistical foundation for latent prints, ballistics, tiremarks, handwriting, bloodstain patterns, toolmarks, pattern evidence analyses, and for computer and information systems, mobile devices, network traffic, social media, and GPS digital evidence analyses. CSAFE is funded under a cooperative agreement with Iowa State University, to set up a center in partnership with investigators at Carnegie Mellon University, the University of Virginia, and the University of California, Irvine; the total support is $20 million over five years. PCAST estimates that NIST commits a total of approximately $5 million per year in support for extramural research projects on foundational forensic science, consisting of approximately $4 million to CSAFE and approximately $1 million to other projects.

NIJ has no budget allocated specifically for forensic science research. In order to support research activities, NIJ must draw from its base funding, funding from the Office of Justice Programs’ assistance programs for research and statistics, or from the DNA backlog reduction programs. Most of its research support is directed to applied research. Although it is difficult to classify NIJ’s research projects, we estimate that NIJ commits a total of approximately $4 million per year to support extramural research projects on fundamental forensic science.

Even with the recent increases, the total extramural funding for fundamental research in forensic science across NSF, NIST, and NIJ is thus likely to be in the range of only $13.5 million per year.

74 The centers NSF is proposing to create are Industry/University Cooperative Research Centers (I/UCRCs). I/UCRCs are collaborative by design and could be effective in helping to bridge the scientific and cultural gap between academic researchers who work in forensics-relevant fields of science and forensic practitioners. www.nsf.gov/pubs/2014/nsf14066/nsf14066.pdf.
76 National Academies of Sciences, Engineering, and Medicine. Support for Forensic Science Research: Improving the Scientific Role of the National Institute of Justice. The National Academies Press. Washington DC. (2015). According to the report, “Congressional appropriations to support NIJ’s research programs declined during the early to mid-2000s and remain insufficient, especially in light of the growing challenges facing the forensic science community…With limited base funding, NIU funds research and development from the appropriations for DNA backlog reduction programs and other assistance programs. These carved-out funds are essentially supporting NIJ’s current forensic science portfolio, but there are pressures to limit the amount used for research from these programs. In the past 3 years, funding for these assistance programs has declined; therefore, funds available for research have also been reduced.”
The 2009 NRC report found that

Forensic science research is [overall] not well supported. . . . Relative to other areas of science, the forensic science disciplines have extremely limited opportunities for research funding. Although the FBI and NIJ have supported some research in the forensic science disciplines, the level of support has been well short of what is necessary for the forensic science community to establish strong links with a broad base of research universities and the national research community. Moreover, funding for academic research is limited . . . , which can inhibit the pursuit of more fundamental scientific questions essential to establishing the foundation of forensic science. Finally, the broader research community generally is not engaged in conducting research relevant to advancing the forensic science disciplines.⁷⁸

A 2015 NRC report, *Support for Forensic Science Research: Improving the Scientific Role of the National Institute of Justice*, found that the status of forensic science research funding has not improved much since the 2009 NRC report.⁷⁹

In addition, the Defense Forensic Science Center has recently begun to support extramural research spanning the forensic science disciplines as part of its mission to provide specialized forensic and biometric research capabilities and support to the Department of Defense. Redesignated as DFSC in 2013, the Center was formerly the U.S. Army Criminal Investigation Laboratory, originally charged with supporting criminal investigations within the military but additionally tasked in 2007 with providing an “enduring expeditionary forensics capability,” in response in part to the need to investigate and prosecute explosives attacks in Iraq and Afghanistan. While the bulk of DFSC support has traditionally supported research in DNA analysis and biochemistry, the Center has recently directed resources toward projects to address critical foundational gaps in other disciplines, including firearms and latent print analysis.

Notably, DFSC has helped stimulate research in the forensic science community. Discussions between DFSC and the American Society of Crime Lab Directors (ASCLD) led ASCLD to host a meeting in 2011 to identify research priorities for the forensic science community. DFSC agreed to fund two foundational studies to address the highest priority research needs identified by the Forensic Research Committee of ASCLD: the first independent “black-box” study on firearms analysis and a DNA mixture interpretation study (see Chapter 5). In FY 2015, DFSC allocated approximately $9.2 million to external forensic science research. Seventy-five percent of DFSC’s funding supported projects with regard to DNA/biochemistry; 9 percent digital evidence; 8 percent non-DNA pattern evidence; and 8 percent chemistry.⁸⁰ As is the case for NIJ, there is no line item in DFSC’s budget dedicated to forensic science research; DFSC instead must solicit funding from multiple sources within the Department of Defense to support this research.

A Critical Gap: Scientific Validity

The Administration has taken important and much needed initial steps by creating mechanisms to discuss policy, develop best practices for practitioners of specific methods, and support scientific research. At the same time, work to date has not addressed the 2009 NRC report’s call to examine the fundamental scientific validity and reliability of many forensic methods used every day in courts. The remainder of our report focuses on that issue.
3. The Role of Scientific Validity in the Courts

The central focus of this report is the scientific validity of forensic-science evidence—more specifically, evidence from scientific methods for comparison of features (in, for example, DNA, latent fingerprints, bullet marks and other items). The reliability of methods for interpreting evidence is a fundamental consideration throughout science. Accordingly, every scientific field has a well-developed, domain-specific understanding of what scientific validity of methods entails.

The concept of scientific validity also plays an important role in the legal system. In particular, as noted in Chapter 1, the Federal Rules of Evidence require that expert testimony about forensic science must be the product of “reliable principles and methods” that have been “reliably applied . . . to the facts of the case.”

This report explicates the scientific criteria for scientific validity in the case of forensic feature-comparison methods, for use both within the legal system and by those working to strengthen the scientific underpinnings of those disciplines. Before delving into that scientific explication, we provide in this chapter a very brief summary, aimed principally at scientists and lay readers, of the relevant legal background and terms, as well as the nature of this intersection between law and science.

3.1 Evolution of Admissibility Standards

Over the course of the 20th century, the legal system’s approach for determining the admissibility of scientific evidence has evolved in response to advances in science. In 1923, in Frye v. United States, the Court of Appeals for the District of Columbia considered the admissibility of testimony concerning results of a purported “lie detector,” a systolic-blood-pressure deception test that was a precursor to the polygraph machine. After describing the device and its operation, the Court rejected the testimony, stating:

[W]hile courts will go a long way in admitting expert testimony deduced from a well-recognized scientific principle or discovery, the thing from which the deduction is made must be sufficiently established to have gained general acceptance in the particular field in which it belongs.82

The court found that the systolic test had “not yet gained such standing and scientific recognition among physiological and psychological authorities,” and was therefore inadmissible.

More than a half-century later, the Federal Rules of Evidence were enacted into law in 1975 to guide criminal and civil litigation in Federal courts. Rule 702, in its original form, stated that:

81 Frye v. United States, 293 F. 1013 (D.C. Cir. 1923).
82 Ibid., 1014.
If scientific, technical, or other specialized knowledge will assist the trier of fact to understand the evidence or to determine a fact in issue, a witness qualified as an expert by knowledge, skill, experience, training, or education, may testify thereon in the form of an opinion or otherwise.\(^3\)

There was considerable debate among litigants, judges, and legal scholars as to whether the rule embraced the Frye standard or established a new standard.\(^4\) In 1993, the United States Supreme Court sought to resolve these questions in its landmark ruling in Daubert v. Merrell Dow Pharmaceuticals. In interpreting Rule 702, the Daubert Court held that the Federal Rules of Evidence superseded Frye as the standard for admissibility of expert evidence in Federal courts. The Court rejected “general acceptance” as the standard for admissibility and instead held that the admissibility of scientific expert testimony depended on its scientific reliability.

Where Frye told judges to defer to the judgment of the relevant expert community, Daubert assigned trial court judges the role of “gatekeepers” charged with ensuring that expert testimony “rests on reliable foundation.”\(^5\)

The Court stated that “the trial judge must determine . . . whether the reasoning or methodology underlying the testimony is scientifically valid.”\(^6\) It identified five factors that a judge should, among others, ordinarily consider in evaluating the validity of an underlying methodology. These factors are: (1) whether the theory or technique can be (and has been) tested; (2) whether the theory or technique has been subjected to peer review and publication; (3) the known or potential rate of error of a particular scientific technique; (4) the existence and maintenance of standards controlling the technique’s operation; and (5) a scientific technique’s degree of acceptance within a relevant scientific community.

The Daubert court also noted that judges evaluating proffers of expert scientific testimony should be mindful of other applicable rules, including:

- Rule 403, which permits the exclusion of relevant evidence “if its probative value is substantially outweighed by the danger of unfair prejudice, confusion of the issues, or misleading the jury...” (noting that expert evidence can be “both powerful and quite misleading because of the difficulty in evaluating it.”); and
- Rule 706, which allows the court at its discretion to procure the assistance of an expert of its own choosing.\(^7\)

\(^5\) Daubert, at 597.

\(^6\) Daubert, at 580. See also, FN9 (“in a case involving scientific evidence, evidentiary reliability will be based on scientific validity.” [emphasis in original]).

\(^7\) Daubert, at 595, citing Weinstein, 138 F.R.D., at 632.
Congress amended Rule 702 in 2000 to make it more precise, and made further stylistic changes in 2011. In its current form, Rule 702 imposes four requirements:

A witness who is qualified as an expert by knowledge, skill, experience, training, or education may testify in the form of an opinion or otherwise if:

(a) the expert’s scientific, technical, or other specialized knowledge will help the trier of fact to understand the evidence or to determine a fact in issue;
(b) the testimony is based on sufficient facts or data;
(c) the testimony is the product of reliable principles and methods; and
(d) the expert has reliably applied the principles and methods to the facts of the case.

An Advisory Committee’s Note to Rule 702 also specified a number of reliability factors that supplement the five factors enumerated in Daubert. Among those factors is “whether the field of expertise claimed by the expert is known to reach reliable results.”

Many states have adopted rules of evidence that track key aspects of these federal rules. Such rules are now the law in over half of the states, while other states continue to follow the Frye standard or variations of it.

3.2 Foundational Validity and Validity as Applied

As described in Daubert, the legal system envisions an important conversation between law and science:

“The [judge’s] inquiry envisioned by Rule 702 is, we emphasize, a flexible one. Its overarching subject is the scientific validity—and thus the evidentiary relevance and reliability—of the principles that underlie a proposed submission.”

88 See: Fed. R. Evid. 702 Advisory Committee note (2000). The following factors may be relevant under Rule 702: whether the underlying research was conducted independently of litigation; whether the expert unjustifiably extrapolated from an accepted premise to an unfounded conclusion; whether the expert has adequately accounted for obvious alternative explanations; whether the expert was as careful as she would be in her professional work outside of paid litigation; and whether the field of expertise claimed by the expert is known to reach reliable results [emphasis added].

89 This note has been pointed to as support for efforts to challenge entire fields of forensic science, including fingerprints and hair comparisons. See: Giannelli, P.C. “The Supreme Court’s ‘Criminal’ Daubert Cases.” Seton Hall Law Review, Vol. 33 (2003): 1096.

90 Even under the Frye formulation, the views of scientists about the meaning of reliability are relevant. Frye requires that a scientific technique or method must “have general acceptance” in the relevant scientific community to be admissible. As a scientific matter, the relevant scientific community for assessing the reliability of feature-comparison sciences includes metrologists (including statisticians) as well as other physical and life scientists from disciplines on which the specific methods are based. Importantly, the community is not limited to forensic scientists who practice the specific method. For example, the Frye court evaluated whether the proffered lie detector had gained “standing and scientific recognition among physiological and psychological authorities,” rather than among lie detector experts. Frye v. United States, 293 F. 1013 (D.C. Cir. 1923).

91 Daubert, at 594
Legal and scientific considerations thus both play important roles.

(1) The admissibility of expert testimony depends on a threshold test of, among other things, whether it meets certain legal standards embodied in Rule 702. These decisions about admissibility are exclusively the province of the courts.

(2) Yet, as noted above, the overarching subject of the judge’s inquiry under Rule 702 is “scientific validity.” It is the proper province of the scientific community to provide guidance concerning scientific standards for scientific validity.

PCAST does not opine here on the legal standards, but seeks only to clarify the scientific standards that underlie them. For complete clarity about our intent, we have adopted specific terms to refer to the scientific standards for two key types of scientific validity, which we mean to correspond, as scientific standards, to the legal standards in Rule 702 (c,d)):

(1) by “foundational validity,” we mean the scientific standard corresponding to the legal standard of evidence being based on “reliable principles and methods,” and

(2) by “validity as applied,” we mean the scientific standard corresponding to the legal standard of an expert having “reliably applied the principles and methods.”

In the next chapter, we turn to discussing the scientific standards for these concepts. We close this chapter by noting that answering the question of scientific validity in the forensic disciplines is important not just for the courts but also because it sets quality standards that ripple out throughout these disciplines—affecting practice and defining necessary research.
4. Scientific Criteria for Validity and Reliability of Forensic Feature-Comparison Methods

In this report, PCAST has chosen to focus on defining the validity and reliability of one specific area within forensic science: forensic feature-comparison methods. We have done so because it is both possible and important to do so for this particular class of methods.

- It is possible because feature comparison is a common scientific activity, and science has clear standards for determining whether such methods are reliable. In particular, feature-comparison methods belong squarely to the discipline of metrology—the science of measurement and its application.92,93

- It is important because it has become apparent, over the past decade, that faulty forensic feature comparison has led to numerous miscarriages of justice.94 It has also been revealed that the problems

92 International Vocabulary of Metrology – Basic and General Concepts and Associated Terms (VIM 3rd edition) JCGM 200 (2012).

93 That forensic feature-comparison methods belong to the field of metrology is clear from the fact that NIST—whose mission is to assist the Nation by “advancing measurement science, standards and technology,” and which is the world’s leading metrological laboratory—is the home within the Federal government for research efforts on forensic science. NIST’s programs include internal research, extramural research funding, conferences, and preparation of reference materials and standards. See: www.nist.gov/public_affairs/mission.cfm and www.nist.gov/forensics/index.cfm. Forensic feature-comparison methods involve determining whether two sets of features agree within a given measurement tolerance.

94 DNA-based re-examination of past cases has led so far to the exoneration of 342 defendants, including 20 who had been sentenced to death, and to the identification of 147 real perpetrators. See: Innocence Project, “DNA Exonerations in the United States.” www.innocenceproject.org/dna-exonerations-in-the-united-states. Reviews of these cases have revealed that roughly half relied in part on expert testimony that was based on methods that had not been subjected to meaningful scientific scrutiny or that included scientifically invalid claims of accuracy. See: Gross, S.R., and M. Shaffer. “Exonerations in the United States, 1989-2012.” National Registry of Exonerations, (2012) available at: www.law.umich.edu/special/exoneration/Documents/exonerations_us_1989_2012_full_report.pdf; Garrett, B.L., and P.J. Neufeld. “Invalid forensic science testimony and wrongful convictions.” Virginia Law Review, Vol. 91, No. 1 (2009): 1-97; National Research Council. Strengthening Forensic Science in the United States: A Path Forward. The National Academies Press. Washington DC. (2009): 42-3. The nature of the issues is illustrated by specific examples described in the materials cited: Levon Brooks and Kennedy Brewer, each convicted of separate child murders in the 1990s almost entirely on the basis of bitemark analysis testimony, spent more than 13 years in prison before DNA testing identified the actual perpetrator, who confessed to both crimes; Santae Tribble, convicted of murder after an FBI analyst testified that hair from a stocking mask linked Tribble to the crime and “matched in all microscopic characteristics,” spent more than 20 years in prison before DNA testing revealed that none of the 13 hairs belonged to Tribble and that one came from a dog; Jimmy Ray Bromgard of Montana served 15 years in prison for rape before DNA testing showed that hairs collected from the victim’s bed and reported as a match to Bromgard’s could not have come from him; Stephan Cowans, convicted of shooting a Boston police officer after two fingerprint experts testified that a thumbprint left by the perpetrator was “unique and
are not due simply to poor performance by a few practitioners, but rather to the fact that the reliability of many forensic feature-comparison methods has never been meaningfully evaluated.95

Compared to many types of expert testimony, testimony based on forensic feature-comparison methods poses unique dangers of misleading jurors for two reasons:

- The vast majority of jurors have no independent ability to interpret the probative value of results based on the detection, comparison, and frequency of scientific evidence. If matching halves of a ransom note were found at a crime scene and at a defendant’s home, jurors could rely on their own experiences to assess how unlikely it is that two torn scraps would match if they were not in fact from a single original note. If a witness were to describe a perpetrator as “tall and bushy haired,” jurors could make a reasonable judgment of how many people might match the description. But, if an expert witness were to say that, in two DNA samples, the third exon of the DYNC1H1 gene is precisely 174 nucleotides in length, most jurors would have no way to know if they should be impressed by the coincidence; they would be completely dependent on expert statements garbed in the mantle of science. (As it happens, they should not be impressed by the preceding statement: At the DNA locus cited, more than 99.9 percent of people have a fragment of the indicated size.96)

- The potential prejudicial impact is unusually high, because jurors are likely to overestimate the probative value of a “match” between samples. Indeed, the DOJ itself historically overestimated the probative value of matches in its longstanding contention, now acknowledged to be inappropriate, that latent fingerprint analysis was “infallible.”97 Similarly, a former head of the FBI’s fingerprint unit testified that the FBI had “an error rate of one per every 11 million cases.”98 In an online experiment, researchers asked mock jurors to estimate the frequency that a qualified, experienced forensic scientist would mistakenly conclude that two samples of specified types came from the same person when they actually came from two different people. The mock jurors believed such errors are likely to occur about 1 in 5.5 million for fingerprint analysis comparison; 1 in 1 million for bitemark comparison; 1 in 1 million for hair comparison; and 1 in 100 thousand for handwriting comparison.99 While precise error rates are not known for most of these techniques, all indications point to the actual error rates being orders of magnitude higher. For example, the FBI’s own studies of latent fingerprint analysis point to error rates in the range of one in several hundred.100 (Because the term “match” is likely to imply an identical,” spent more than 5 years in prison before DNA testing on multiple items of evidence excluded him as the perpetrator; and Steven Barnes of upstate New York served 20 years in prison for a rape and murder he did not commit after a criminalist testified that a photographic overlay of fabric from the victim’s jeans and an imprint on Barnes’ truck showed patterns that were “similar” and hairs collected from the truck were similar to the victim’s hairs.95 See: Chapter 5.

96 See: ExAC database: exac.broadinstitute.org/gene/ENSG00000197102.

100 See: Section 5.4.
inappropriately high probative value, a more neutral term should be used for an examiner’s belief that two samples come from the same source. We suggest the term “proposed identification” to appropriately convey the examiner’s conclusion, along with the possibility that it might be wrong. We will use this term throughout this report.

This chapter lays out PCAST’s conclusions concerning the scientific criteria for scientific validity. The conclusions are based on the fundamental principles of the “scientific method”—applicable throughout science—that valid scientific knowledge can only be gained through empirical testing of specific propositions.101 PCAST’s conclusions in the chapter might be briefly summarized as follows:

Scientific validity and reliability require that a method has been subjected to empirical testing, under conditions appropriate to its intended use, that provides valid estimates of how often the method reaches an incorrect conclusion. For subjective feature-comparison methods, appropriately designed black-box studies are required, in which many examiners render decisions about many independent tests (typically, involving “questioned” samples and one or more “known” samples) and the error rates are determined. Without appropriate estimates of accuracy, an examiner’s statement that two samples are similar—or even indistinguishable—is scientifically meaningless: it has no probative value, and considerable potential for prejudicial impact. Nothing—not training, personal experience nor professional practices—can substitute for adequate empirical demonstration of accuracy.

The chapter is organized as follows:

- The first section describes the distinction between two fundamentally different types of feature-comparison methods: objective methods and subjective methods.
- The next five sections discuss the scientific criteria for the two types of scientific validity: foundational validity and validity as applied.
- The final two sections discuss views held in the forensic community.

4.1 Feature-Comparison Methods: Objective and Subjective Methods

A forensic feature-comparison method is a procedure by which an examiner seeks to determine whether an evidentiary sample (e.g., from a crime scene) is or is not associated with a source sample (e.g., from a suspect)102 based on similar features. The evidentiary sample might be DNA, hair, fingerprints, bitemarks, toolmarks, bullets, tire tracks, voiceprints, visual images, and so on. The source sample would be biological material or an item (tool, gun, shoe, or tire) associated with the suspect.

101 For example, the Oxford Online Dictionary defines the scientific method as “a method or procedure that has characterized the natural sciences since the 17th century, consisting in systematic observation, measurement, and experimentation, and the formulation, testing, and modification of hypotheses.” “Scientific method” Oxford Dictionaries Online. Oxford University Press (accessed on August 19, 2016).

102 A “source sample” refers to a specific individual or object (e.g., a tire or gun).
Feature-comparison methods may be classified as either objective or subjective. By objective feature-comparison methods, we mean methods consisting of procedures that are each defined with enough standardized and quantifiable detail that they can be performed by either an automated system or human examiners exercising little or no judgment. By subjective methods, we mean methods including key procedures that involve significant human judgment—for example, about which features to select or how to determine whether the features are sufficiently similar to be called a proposed identification.

Objective methods are, in general, preferable to subjective methods. Analyses that depend on human judgment (rather than a quantitative measure of similarity) are obviously more susceptible to human error, bias, and performance variability across examiners. In contrast, objective, quantified methods tend to yield greater accuracy, repeatability and reliability, including reducing variation in results among examiners. Subjective methods can evolve into or be replaced by objective methods.

4.2 Foundational Validity: Requirement for Empirical Studies

For a metrological method to be scientifically valid and reliable, the procedures that comprise it must be shown, based on empirical studies, to be repeatable, reproducible, and accurate, at levels that have been measured and are appropriate to the intended application.

<table>
<thead>
<tr>
<th>BOX 2. Definition of key terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>By “repeatable,” we mean that, with known probability, an examiner obtains the same result, when analyzing samples from the same sources.</td>
</tr>
<tr>
<td>By “reproducible,” we mean that, with known probability, different examiners obtain the same result, when analyzing the same samples.</td>
</tr>
<tr>
<td>By “accurate,” we mean that, with known probabilities, an examiner obtains correct results both (1) for samples from the same source (true positives) and (2) for samples from different sources (true negatives).</td>
</tr>
<tr>
<td>By “reliability,” we mean repeatability, reproducibility, and accuracy.</td>
</tr>
</tbody>
</table>

104 For example, before the development of objective tests for intoxication, courts had to rely exclusively on the testimony of police officers and others who in turn relied on behavioral indications of drunkenness and the presence of alcohol on the breath. The development of objective chemical tests drove a change from subjective to objective standards.
106 Feature-comparison methods that get the wrong answer too often have, by definition, low probative value. As discussed above, the prejudicial impact will thus likely to outweigh the probative value.
107 We note that “reliability” also has a narrow meaning within the field of statistics referring to “consistency”—that is, the extent to which a method produces the same result, regardless of whether the result is accurate. This is not the sense in which “reliability” is used in this report, or in the law.
By “scientific validity,” we mean that a method has shown, based on empirical studies, to be reliable with levels of repeatability, reproducibility, and accuracy that are appropriate to the intended application.

By an “empirical study,” we mean test in which a method has been used to analyze a large number of independent sets of samples, similar in relevant aspects to those encountered in casework, in order to estimate the method’s repeatability, reproducibility, and accuracy.

By a “black-box study,” we mean an empirical study that assesses a subjective method by having examiners analyze samples and render opinions about the origin or similarity of samples.

The method need not be perfect, but it is clearly essential that its accuracy has been measured based on appropriate empirical testing and is high enough to be appropriate to the application. Without an appropriate estimate of its accuracy, a metrological method is useless—because one has no idea how to interpret its results. The importance of knowing a method’s accuracy was emphasized by the 2009 NRC report on forensic science and by a 2010 NRC report on biometric technologies.108

To meet the scientific criteria of foundational validity, two key elements are required:

1. a reproducible and consistent procedure for (a) identifying features within evidence samples; (b) comparing the features in two samples; and (c) determining, based on the similarity between the features in two samples, whether the samples should be declared to be a proposed identification (“matching rule”).

2. empirical measurements, from multiple independent studies, of (a) the method’s false positive rate—that is, the probability it declares a proposed identification between samples that actually come from different sources and (b) the method’s sensitivity—that is, probability that it declares a proposed identification between samples that actually come from the same source.

We discuss these elements in turn.

Reproducible and Consistent Procedures

For a method to be objective, each of the three steps (feature identification, feature comparison, and matching rule) should be precisely defined, reproducible and consistent. Forensic examiners should identify relevant features in the same way and obtain the same result. They should compare features in the same quantitative manner. To declare a proposed identification, they should calculate whether the features in an evidentiary sample and the features in a sample from a suspected source lie within a pre-specified measurement tolerance

108 “Biometric recognition is an inherently probabilistic endeavor...Consequently, even when the technology and the system it is embedded in are behaving as designed, there is inevitable uncertainty and risk of error.” National Research Council, “Biometric Recognition: Challenges and Opportunities.” The National Academies Press. Washington DC. (2010): viii-ix.
(matching rule). For an objective method, one can establish the foundational validity of each of the individual steps by measuring its accuracy, reproducibility, and consistency.

For subjective methods, procedures must still be carefully defined—but they involve substantial human judgment. For example, different examiners may recognize or focus on different features, may attach different importance to the same features, and may have different criteria for declaring proposed identifications. Because the procedures for feature identification, the matching rule, and frequency determinations about features are not objectively specified, the overall procedure must be treated as a kind of “black box” inside the examiner’s head.

Subjective methods require careful scrutiny, more generally, their heavy reliance on human judgment means that they are especially vulnerable to human error, inconsistency across examiners, and cognitive bias. In the forensic feature-comparison disciplines, cognitive bias includes the phenomena that, in certain settings, humans (1) may tend naturally to focus on similarities between samples and discount differences and (2) may also be influenced by extraneous information and external pressures about a case. (The latter issues are illustrated by the FBI’s misidentification of a latent fingerprint in the Madrid training bombing, discussed on p. 9.)

Since the black box in the examiner’s head cannot be examined directly for its foundational basis in science, the foundational validity of subjective methods can be established only through empirical studies of examiner’s performance to determine whether they can provide accurate answers; such studies are referred to as “black-box” studies (Box 2). In black-box studies, many examiners are presented with many independent comparison problems—typically, involving “questioned” samples and one or more “known” samples—and asked to declare whether the questioned samples came from the same source as one of the known samples. The researchers then determine how often examiners reach erroneous conclusions.

109 If a source is declared not to share the same features, it is “excluded” by the test. The matching rule should be chosen carefully. If the “matching rule” is chosen to be too strict, samples that actually come from the same source will be declared a non-match (false negative). If it is too lax, then the method will not have much discriminatory power because the random match probability will be too high (false positive).

111 Answers may be expressed in such terms as “match/no match/inconclusive” or “identification/exclusion/inconclusive.”
As an excellent example, the FBI recently conducted a black-box study of latent fingerprint analysis, involving 169 examiners and 744 fingerprint pairs, and published the results of the study in a leading scientific journal.\footnote{Ulery, B.T., Hicklin, R.A., Buscaglia, J., and M.A. Roberts. “Accuracy and reliability of forensic latent fingerprint decisions.” \textit{Proceedings of the National Academy of Sciences}, Vol. 108, No. 19 (2011): 7733-8.}

(Some forensic scientists have cautioned that too much attention to the subjective aspects of forensic methods—such as studies of cognitive bias and black-box studies—might distract from the goal of improving knowledge about the objective features of the forensic evidence and developing truly objective methods.\footnote{Champod, C. “Research focused mainly on bias will paralyse forensic science.” \textit{Science & Justice}, Vol. 54 (2014): 107–9.} Others have noted that this is not currently a problem, because current efforts and funding to address the challenges associated with subjective forensic methods are very limited.\footnote{Risinger, D.M., Thompson, W.C., Jamieson, A., Koppl, R., Kornfield, I., Krane, D., Mnookin, J.L., Rosenthal, R., Saks, M.J., and S.L. Zabell. “Regarding Champod, editorial: “Research focused mainly on bias will paralyse forensic science.” \textit{Science and Justice}, Vol. 54 (2014):508-9.})

\section*{Empirical Measurements of Accuracy}

It is necessary to have appropriate empirical measurements of a method’s false positive rate and the method’s sensitivity. As explained in Appendix A, it is necessary to know these two measures to assess the probative value of a method.

The false positive rate is the probability that the method declares a proposed identification between samples that actually come from \textit{different} sources. For example, a false positive rate of 5 percent means that two samples from \textit{different} sources will (due to limitations of the method) be incorrectly declared to come from the same source 5 percent of the time. (The quantity equal to one minus the false positive rate—95 percent, in the example—is referred to as the specificity.)

The method’s sensitivity is the probability that the method declares a proposed identification between samples that actually come from the \textit{same} source. For example, a sensitivity of 90 percent means two samples from the same source will be declared to come from the same source 90 percent of the time, and declared to come from different sources 10 percent of the time. (The latter quantity is referred to as the false negative rate.)

The false positive rate is especially important because false positive results can lead directly to wrongful convictions.\footnote{See footnote 94, p. 44. Under some circumstances, false-negative results can contribute to wrongful convictions as well.} In some circumstances, it may be possible to estimate a false positive rate related to specific features of the evidence in the case. (For example, the random match probability calculated in DNA analysis depends in part on the specific genotype seen in an evidentiary sample. The false positive rate for latent fingerprint analysis may depend on the quality of the latent print.) For other feature-comparison methods, it may be only possible to make an overall estimate of the average false positive rate across samples.

For objective methods, the false positive rate is composed of two distinguishable sources—coincidental matches (where samples from different sources nonetheless have features that fall within the tolerance of the objective matching rule) and human/technical failures (where samples have features that fall outside the matching rule, but where a proposed identification was nonetheless declared due to a human or technical failure). For
objective methods where the probability of coincidental match is very low (such as DNA analysis), the false positive rate in application in a given case will be dominated by the rate of human/technical failures—which may well be hundreds of times larger.

For subjective methods, both types of error—coincidental matches and human/technical failures—occur as well, but, without an objective “matching rule,” the two sources cannot be distinguished. In establishing foundational validity, it is thus essential to perform black-box studies that empirically measure the overall error rate across many examiners. (See Box 3 concerning the word “error.”)

BOX 3. The meanings of “error”

The term “error” has differing meanings in science and law, which can lead to confusion. In legal settings, the term “error” often implies fault—e.g., that a person has made a mistake that could have been avoided if he or she had properly followed correct procedures or a machine has given an erroneous result that could have been avoided it if had been properly calibrated. In science, the term “error” also includes the situation in which the procedure itself, when properly applied, does not yield the correct answer owing to chance occurrence.

When one applies a forensic feature-comparison method with the goal of assessing whether two samples did or did not come from the same source, coincidental matches and human/technical failures are both regarded, from a statistical point of view, as “errors” because both can lead to incorrect conclusions.

Studies designed to estimate a method’s false positive rate and sensitivity are necessarily conducted using only a finite number of samples. As a consequence, they cannot provide “exact” values for these quantities (and should not claim to do so), but only “confidence intervals,” whose bounds reflect, respectively, the range of values that are reasonably compatible with the results. When reporting a false positive rate to a jury, it is scientifically important to state the “upper 95 percent one-sided confidence bound” to reflect the fact that the actual false positive rate could reasonably be as high as this value.116 (For more information, see Appendix A.)

Studies often categorize their results as being conclusive (e.g., identification or exclusion) or inconclusive (no determination made).117 When reporting a false positive rate to a jury, it is scientifically important to calculate the rate based on the proportion of conclusive examinations, rather than just the proportion of all examinations. This is appropriate because evidence used against a defendant will typically be based on conclusive, rather than inconclusive, examinations. To illustrate the point, consider an extreme case in which a method had been

116 The upper confidence bound properly incorporates the precision of the estimate based on the sample size. For example, if a study found no errors in 100 tests, it would be misleading to tell a jury that the error rate was 0 percent. In fact, if the tests are independent, the upper 95 percent confidence bound for the true error rate is 3.0 percent. Accordingly a jury should be told that the error rate could be as high as 3.0 percent (that is, 1 in 33). The true error rate could be higher, but with rather small probability (less than 5 percent). If the study were much smaller, the upper 95 percent confidence limit would be higher. For a study that found no errors in 10 tests, the upper 95 percent confidence bound is 26 percent—that is, the actual false positive rate could be roughly 1 in 4 (see Appendix A).

117 See: Chapter 5.
tested 1000 times and found to yield 990 inconclusive results, 10 false positives, and no correct results. It would be misleading to report that the false positive rate was 1 percent (10/1000 examinations). Rather, one should report that 100 percent of the conclusive results were false positives (10/10 examinations).

Whereas exploratory scientific studies may take many forms, scientific validation studies—intended to assess the validity and reliability of a metrological method for a particular forensic feature-comparison application—must satisfy a number of criteria, which are described in Box 4.

BOX 4. Key criteria for validation studies to establish foundational validity

Scientific validation studies—intended to assess the validity and reliability of a metrological method for a particular forensic feature-comparison application—must satisfy a number of criteria.

1. The studies must involve a sufficiently large number of examiners and must be based on sufficiently large collections of known and representative samples from relevant populations to reflect the range of features or combinations of features that will occur in the application. In particular, the sample collections should be:

 (a) representative of the quality of evidentiary samples seen in real cases. (For example, if a method is to be used on distorted, partial, latent fingerprints, one must determine the random match probability—that is, the probability that the match occurred by chance—for distorted, partial, latent fingerprints; the random match probability for full scanned fingerprints, or even very high quality latent prints would not be relevant.)

 (b) chosen from populations relevant to real cases. For example, for features in biological samples, the false positive rate should be determined for the overall US population and for major ethnic groups, as is done with DNA analysis.

 (c) large enough to provide appropriate estimates of the error rates.

2. The empirical studies should be conducted so that neither the examiner nor those with whom the examiner interacts have any information about the correct answer.

3. The study design and analysis framework should be specified in advance. In validation studies, it is inappropriate to modify the protocol afterwards based on the results.\(^{118}\)

(4) The empirical studies should be conducted or overseen by individuals or organizations that have no stake in the outcome of the studies.

(5) Data, software and results from validation studies should be available to allow other scientists to review the conclusions.

(6) To ensure that conclusions are reproducible and robust, there should be multiple studies by separate groups reaching similar conclusions.

An empirical measurement of error rates is not simply a desirable feature; it is essential for determining whether a method is foundationally valid. In science, a testing procedure—such as testing whether a person is pregnant or whether water is contaminated—is not considered valid until its reliability has been empirically measured. For example, we need to know how often the pregnancy test declares a pregnancy when there is none, and vice versa. The same scientific principles apply no less to forensic tests, which may contribute to a defendant losing his life or liberty.

Importantly, error rates cannot be inferred from casework, but rather must be determined based on samples where the correct answer is known. For example, the former head of the FBI’s fingerprint unit testified that the FBI had “an error rate of one per every 11 million cases” based on the fact that the agency was known to have made only one mistake over the past 11 years, during which time it had made 11 million identifications. The fallacy is obvious: the expert simply assumed without evidence that every error in casework had come to light.

Why is it essential to know a method’s false positive rate and sensitivity? Because without appropriate empirical measurement of a method’s accuracy, the fact that two samples in a particular case show similar features has no probative value—and, as noted above, it may have considerable prejudicial impact because juries will likely incorrectly attach meaning to the observation.

119 In the setting of clinical trials, the sponsor of the trial (a pharmaceutical, device or biotech company or, in some cases, an academic institutions) funds and initiates the study, but the trial is conducted by individuals who are independent of the sponsor (often, academic physicians), in order to ensure the reliability of the data generated by the study and minimize the potential for bias. See, for example, 21 C.F.R. § 312.3 and 21 C.F.R. § 54.4(a).

121 Under Fed. R. Evid., Rule 403, evidence should be excluded “if its probative value is substantially outweighed by the danger of unfair prejudice.”
The absolute need, from a scientific perspective, for empirical data is elegantly expressed in an analogy by U.S. District Judge John Potter in his opinion in *U.S. v. Yee (1991)*, an early case on the use of DNA analysis:

> Without the probability assessment, the jury does not know what to make of the fact that the patterns match: the jury does not know whether the patterns are as common as pictures with two eyes, or as unique as the Mona Lisa.\(^{122,123}\)

4.3 Foundational Validity: Requirement for Scientifically Valid Testimony

It should be obvious—but it bears emphasizing—that once a method has been established as foundationally valid based on appropriate empirical studies, claims about the method’s accuracy and the probative value of proposed identifications, in order to be valid, must be based on such empirical studies. *Statements claiming or implying greater certainty than demonstrated by empirical evidence are scientifically invalid.* Forensic examiners should therefore report findings of a proposed identification with clarity and restraint, explaining in each case that the fact that two samples satisfy a method’s criteria for a proposed match does not necessarily imply that the samples come from a common source. If the false positive rate of a method has been found to be 1 in 50, experts should not imply that the method is able to produce results at a higher accuracy.

Troublingly, expert witnesses sometimes go beyond the empirical evidence about the frequency of features—even to the extent of claiming or implying that a sample came from a specific source with near-certainty or even absolute certainty, despite having no scientific basis for such opinions.\(^{124}\) From the standpoint of scientific validity, experts should never be permitted to state or imply in court that they can draw conclusions with certainty or near-certainty (such as “zero,” “vanishingly small,” “essentially zero,” “negligible,” “minimal,” or “microscopic” error rates; “100 percent certainty” or “to a reasonable degree of scientific certainty;” or identification “to the exclusion of all other sources.”\(^{125}\)

The scientific inappropriateness of such testimony is aptly captured by an analogy by District of Columbia Court of Appeals Judge Catharine Easterly in her concurring opinion in *Williams v. United States*, a case in which an examiner testified that markings on certain bullets were unique to a gun recovered from a defendant’s apartment:

\(^{123}\) Some courts have ruled that there is no harm in admitting feature-comparison evidence on the grounds that jurors can see the features with their own eyes and decide for themselves about whether features are shared. *U.S. v. Yee* shows why this reasoning is fallacious: jurors have no way to know how often two different samples would share features, and to what level of specificity.

\(^{124}\) As noted above, the long history of exaggerated claims for the accuracy of forensic methods includes the DOJ’s own prior statement that latent fingerprint analysis was “infallible,” which the DOJ has judged to have been inappropriate. www.justice.gov/olp/file/861906/download.

As matters currently stand, a certainty statement regarding toolmark pattern matching has the same probative value as the vision of a psychic: it reflects nothing more than the individual’s foundationless faith in what he believes to be true. This is not evidence on which we can in good conscience rely, particularly in criminal cases, where we demand proof—real proof—beyond a reasonable doubt, precisely because the stakes are so high.126

In science, assertions that a metrological method is more accurate than has been empirically demonstrated are rightly regarded as mere speculation, not valid conclusions that merit credence.

4.4 Neither Experience nor Professional Practices Can Substitute for Foundational Validity

In some settings, an expert may be scientifically capable of rendering judgments based primarily on his or her “experience” and “judgment.” Based on experience, a surgeon might be scientifically qualified to offer a judgment about whether another doctor acted appropriately in the operating theater or a psychiatrist might be scientifically qualified to offer a judgment about whether a defendant is mentally competent to assist in his or her defense.

By contrast, “experience” or “judgment” cannot be used to establish the scientific validity and reliability of a metrological method, such as a forensic feature-comparison method. The frequency with which a particular pattern or set of features will be observed in different samples, which is an essential element in drawing conclusions, is not a matter of “judgment.” It is an empirical matter for which only empirical evidence is relevant. Moreover, a forensic examiner’s “experience” from extensive casework is not informative—because the “right answers” are not typically known in casework and thus examiners cannot accurately know how often they erroneously declare matches and cannot readily hone their accuracy by learning from their mistakes in the course of casework.

Importantly, good professional practices—such as the existence of professional societies, certification programs, accreditation programs, peer-reviewed articles, standardized protocols, proficiency testing, and codes of ethics—cannot substitute for actual evidence of scientific validity and reliability.127

Similarly, an expert’s expression of confidence based on personal professional experience or expressions of consensus among practitioners about the accuracy of their field is no substitute for error rates estimated from relevant studies. For a method to be reliable, empirical evidence of validity, as described above, is required.

Finally, the points above underscore that scientific validity of a method must be assessed within the framework of the broader scientific field of which it is a part (e.g., measurement science in the case of feature-comparison methods). The fact that bitemark examiners defend the validity of bitemark examination means little.

126 Williams v. United States, DC Court of Appeals, decided January 21, 2016, (Easterly, concurring).
127 For example, both scientific and pseudoscientific disciplines employ such practices.
4.5 Validity as Applied: Key Elements

Foundational validity means that a method can, in principle, be reliable. Validity as applied means that the method has been reliably applied in practice. It is the scientific concept we mean to correspond to the legal requirement, in Rule 702(d), that an expert “has reliably applied the principles and methods to the facts of the case.”

From a scientific standpoint, certain criteria are essential to establish that a forensic practitioner has reliably applied a method to the facts of a case. These elements are described in Box 5.

BOX 5. Key criteria for validity as applied

1. The forensic examiner must have been shown to be capable of reliably applying the method and must actually have done so. Demonstrating that an examiner is capable of reliably applying the method is crucial—especially for subjective methods, in which human judgment plays a central role. From a scientific standpoint, the ability to apply a method reliably can be demonstrated only through empirical testing that measures how often the expert reaches the correct answer. (Proficiency testing is discussed more extensively on p. 57-59.) Determining whether an examiner has actually reliably applied the method requires that the procedures actually used in the case, the results obtained, and the laboratory notes be made available for scientific review by others.

2. Assertions about the probability of the observed features occurring by chance must be scientifically valid.

 a. The forensic examiner should report the overall false positive rate and sensitivity for the method established in the studies of foundational validity and should demonstrate that the samples used in the foundational studies are relevant to the facts of the case. For example, for DNA analysis, the frequency of genetic variants is known to vary among ethnic groups; it is thus important that the sample collection reflect relevant ethnic groups to the case at hand. For latent fingerprints, the risk of falsely declaring an identification may be higher when latent fingerprints are of lower quality; so, to be relevant, the sample collections used to estimate accuracy should be based on latent fingerprints comparable in quality and completeness to the case at hand.

 b. Where applicable, the examiner should report the random match probability based on the specific features observed in the case.

 c. An expert should not make claims or implications that go beyond the empirical evidence and the applications of valid statistical principles to that evidence.
4.6 Validity as Applied: Proficiency Testing

Even when a method is foundationally valid, there are many reasons why examiners may not always get the right result.129 As discussed above, the only way to establish scientifically that an examiner is capable of applying a foundationally valid method is through appropriate empirical testing to measure how often the examiner gets the correct answer.

Such empirical testing is often referred to as “proficiency testing.” We note that term “proficiency testing” is sometimes used to refer to many different other types of testing—such as (1) tests to determine whether a practitioner reliably follows the steps laid out in a protocol, without assessing the accuracy of their conclusions, and (2) practice exercises that help practitioners improve their skills by highlighting their errors, without accurately reflect the circumstances of actual casework.

In this report, we use the term proficiency testing to mean ongoing empirical tests to “evaluate the capability and performance of analysts.”130, 131, 132

Proficiency testing should be performed under conditions that are representative of casework and on samples, for which the true answer is known, that are representative of the full range of sample types and quality likely to be encountered in casework in the intended application. (For example, the fact that an examiner passes a proficiency test involving DNA analysis of simple, single-source samples does not demonstrate that they are capable of DNA analysis of complex mixtures of the sort encountered in casework; see p. 76-81.)

To ensure integrity, proficiency testing should be overseen by a disinterested third party that has no institutional or financial incentive to skew performance. We note that testing services have stated that forensic community prefers that tests not be too challenging.133

129 J.J. Koehler has enumerated a number of possible problems that could, in principle, occur: features may be mismeasured; samples may be interchanged, mislabeled, miscoded, altered, or contaminated; equipment may be miscalibrated; technical glitches and failures may occur without warning and without being noticed; and results may be misread, misinterpreted, misrecorded, mislabeled, mixed up, misplaced, or discarded. Koehler, J.J. “Forensics or fauxrensics? Ascertaining accuracy in the forensic sciences.” papers.ssrn.com/sol3/papers.cfm?abstract_id=2773255 (accessed June 28, 2016).

130 ASCLD/LAB Supplemental Requirements for Accreditation of Forensic Testing Laboratories. des.wa.gov/SiteCollectionDocuments/About/1063/RFP/Add7_Item4ASCLD.pdf.

131 We note that proficiency testing is not intended to estimate the inherent error rates of a method; these rates should be assessed from foundational validity studies.

132 Proficiency testing should also be distinguished from “competency testing,” which is “the evaluation of a person’s knowledge and ability prior to performing independent work in forensic casework.” des.wa.gov/SiteCollectionDocuments/About/1063/RFP/Add7_Item4ASCLD.pdf.

133 Christopher Czyryca, the president of Collaborative Testing Services, Inc., the leading proficiency testing firm in the U.S., has publicly stated that “Easy tests are favored by the community.” August 2015 meeting of the National Commission on Forensic Science, a presentation at the Accreditation and Proficiency Testing Subcommittee. www.justice.gov/ncfs/file/761061/download.
As noted previously, false positive rates consist of both coincidental match rates and technical/human failure rates. For some technologies (such as DNA analysis), the latter may be hundreds of times higher than the former.

Proficiency testing is especially critical for subjective methods: because the procedure is not based solely on objective criteria but relies on human judgment, it is inherently vulnerable to error and inter-examiner variability. Each examiner should be tested, because empirical studies have noted considerable differences in accuracy across examiners. ¹³⁴ ¹³⁵

The test problems used in proficiency tests should be publicly released after the test is completed, to enable scientists to assess the appropriateness and adequacy of the test for their intended purpose.

Finally, proficiency testing should ideally be conducted in a ‘test-blind’ manner—that is, with samples inserted into the flow of casework such that examiners do not know that they are being tested. (For example, the Transportation Security Administration conducts blind tests by sending weapons and explosives inside luggage through screening checkpoints to see how often TSA screeners detect them.) It has been established in many fields (including latent fingerprint analysis) that, when individuals are aware that they are being tested, they perform differently than they do in the course of their daily work (referred to as the “Hawthorne Effect”). ¹³⁶ ¹³⁷

While test-blind proficiency testing is ideal, there is disagreement in the forensic community about its feasibility in all settings. On the one hand, laboratories vary considerably as to the type of cases they receive, how evidence is managed and processed, and what information is provided to an analyst about the evidence or the case in question. Accordingly, blinded, inter-laboratory proficiency tests may be difficult to design and

¹³⁵ It is not sufficient to point to proficiency testing on volunteers in a laboratory, because better performing examiners are more likely to participate. Koehler, J.J. “Forensics or fauxrensics? Ascertaining accuracy in the forensic sciences.” papers.ssrn.com/sol3/papers.cfm?abstract_id=2773255 (accessed June 28, 2016).

¹³⁷ For demonstrations that forensic examiners change their behavior when they know their performance is being monitored in particular ways, see Langenburg, G. “A performance study of the ACE-V process: A pilot study to measure the accuracy, precision, reproducibility, repeatability, and biasability of conclusions resulting from the ACE-V process.” *Journal of Forensic Identification*, Vol. 59, No. 2 (2009).
orchestrate on a large scale. On the other hand, test-blind proficiency tests have been used for DNA analysis, and select labs have begun to implement this type of testing, in-house, as part of their quality assurance programs. We note that test-blind proficiency testing is much easier to adopt in laboratories that have adopted “context management procedures” to reduce contextual bias.

PCAST believes that test-blind proficiency testing of forensic examiners should be vigorously pursued, with the expectation that it should be in wide use, at least in large laboratories, within the next five years. However, PCAST believes that it is not yet realistic to require test-blind proficiency testing because the procedures for test-blind proficiency tests have not yet been designed and evaluated.

While only non-test-blind proficiency tests are used to support validity as applied, it is scientifically important to report this limitation, including to juries—because, as noted above, non-blind proficiency tests are likely to overestimate the accuracy because the examiners knew they were being tested.

4.7 Non-Empirical Views in the Forensic Community

While the scientific validity of metrological methods requires empirical demonstration of accuracy, there have historically been efforts in the forensic community to justify non-empirical approaches. This is of particular concern because such views are sometimes mistakenly codified in policies or practices. These heterodox views typically involve four recurrent themes, which we review below.

“Theories” of Identification

A common argument is that forensic practices should be regarded as valid because they rest on scientific “theories” akin to the fundamental laws of physics, that should be accepted because they have been tested and not “falsified.”

An example is the “Theory of Identification as it Relates to Toolmarks,” issued in 2011 by the Association of Firearm and Tool Mark Examiners. It states in its entirety:

138 Some of the challenges associated with designing blind inter-laboratory proficiency tests may be addressed if the forensic laboratories were to move toward a system where an examiner’s knowledge of a case were limited to domain-relevant information.
140 For example, the Houston Forensic Science Center has implemented routine, blind proficiency testing for its firearms examiners and chemistry analysis unit, and is planning to carry out similar testing for its DNA and latent print examiners.
141 For background, see www.justice.gov/ncfs/file/888586/download.
144 Firearms analysis is considered in detail in Chapter 5.
1. The theory of identification as it pertains to the comparison of toolmarks enables opinions of common origin to be made when the unique surface of two toolmarks are in “sufficient agreement.”

2. This “sufficient agreement” is related to the significant duplication of random toolmarks as evidenced by the correspondence of a pattern or combination of patterns of surface contours. Significance is determined by the comparative examination of two or more sets of surface contour patterns comprised of individual peaks, ridges and furrows. Specifically, the relative height or depth, width, curvature and spatial relationship of the individual peaks, ridges and furrows within one set of surface contours are defined and compare to the corresponding features in the second set of surface contours. Agreement is significant when the agreement in individual characteristics exceeds the best agreement demonstrated between toolmarks known to have been produced by different tools and is consistent with agreement demonstrated by toolmarks known to have been produced by the same tool. The statement that “sufficient agreement” exists between two toolmarks means that the agreement of individual characteristics is of a quantity and quality that the likelihood another tool could have made the mark is so remote as to be considered a practical impossibility.

3. Currently the interpretation of individualization/identification is subjective in nature, founded on scientific principles and based on the examiner’s training and experience.

The statement is clearly not a scientific theory, which the National Academy of Sciences has defined as “a comprehensive explanation of some aspect of nature that is supported by a vast body of evidence.” Rather, it is a claim that examiners applying a subjective approach can accurately individualize the origin of a toolmark. Moreover, a “theory” is not what is needed. What is needed are empirical tests to see how well the method performs.

More importantly, the stated method is circular. It declares that an examiner may state that two toolmarks have a “common origin” when their features are in “sufficient agreement.” It then defines “sufficient agreement” as occurring when the examiner considers it a “practical impossibility” that the toolmarks have different origins. (In response to PCAST’s concern about this circularity, the FBI Laboratory replied that: “Practical impossibility’ is the certitude that exists when there is sufficient agreement in the quality and quantity of individual characteristics.” This answer did not resolve the circularity.)

Focus on ‘Training and Experience’ Rather Than Empirical Demonstration of Accuracy

Many practitioners hold an honest belief that they are able to make accurate judgments about identification based on their training and experience. This notion is explicit in the AFTE’s *Theory of Identification*, which notes that interpretation is subjective in nature, “based on an examiner’s training and experience.” Similarly, the leading textbook on footwear analysis states,

> Positive identifications may be made with as few as one random identifying characteristic, but only if that characteristic is confirmable; has sufficient definition, clarity, and features; is in the same location and

145 See: www.nas.edu/evolution/TheoryOrFact.html.

146 Communication from FBI Laboratory to PCAST (June 6, 2016).
In effect, it says, positive identification depends on the examiner being positive about the identification.

“Experience” is an inadequate foundation for drawing judgments about whether two sets of features could have been produced by (or found on) different sources. Even if examiners could recall in sufficient detail all the patterns or sets of features that they have seen, they would have no way of knowing accurately in which cases two patterns actually came from different sources, because the correct answers are rarely known in casework.

The fallacy of relying on “experience” was evident in testimony by a former head of the FBI’s fingerprint unit (discussed above) that the FBI had “an error rate of one per every 11 million cases,” based on the fact that the agency was only aware of one mistake. By contrast, recent empirical studies by the FBI Laboratory (discussed in Chapter 5) indicate error rates of roughly one in several hundred.

“Training” is an even weaker foundation. The mere fact that an individual has been trained in a method does not mean that the method itself is scientifically valid nor that the individual is capable of producing reliable answers when applying the method.

Focus on ‘Uniqueness’ Rather Than Accuracy

Many forensic feature-comparison disciplines are based on the premise that various sets of features (for example, fingerprints, toolmarks on bullets, human dentition, and so on) are “unique.”

The forensics science literature contains many “uniqueness” studies that go to great lengths to try to establish the correctness of this premise. ¹⁵⁰ For example, a 2012 paper studied 39 Adidas Supernova Classic running shoes (size 12) worn by a single runner over 8 years, during which time he kept a running journal and ran over the same types of surfaces. ¹⁵¹ After applying black shoe polish to the soles of the shoes, the author asked the runner to carefully produce tread marks on sheets of legal paper on a hardwood floor. The author showed that it was possible to identify small identifying differences between the tread marks produced by different pairs of shoes.

Yet, uniqueness studies miss the fundamental point. The issue is not whether objects or features differ; they surely do if one looks at a fine enough level. The issue is how well and under what circumstances examiners applying a given metrological method can reliably detect relevant differences in features to reliably identify whether they share a common source. Uniqueness studies, which focus on the properties of features themselves, can therefore never establish whether a particular method for measuring and comparing features is foundationally valid. Only empirical studies can do so.

Moreover, it is not necessary for features to be unique in order for them to be useful in narrowing down the source of a feature. Rather, it is essential that there be empirical evidence about how often a method incorrectly attributes the source of a feature.

Decoupling Conclusions about Identification from Estimates of Accuracy

Finally, some hold the view that, when the application of a scientific method leads to a conclusion of an association or proposed identification, it is unnecessary to report in court the reliability of the method.¹⁵² As a rationale, it is sometimes argued that it is impossible to measure error rates perfectly or that it is impossible to know the error rate in the specific case at hand.

This notion is contrary to the fundamental principle of scientific validity in metrology—namely, that the claim that two objects have been compared and found to have the same property (length, weight, or fingerprint pattern) is meaningless without quantitative information about the reliability of the comparison process.

It is standard practice to study and report error rates in medicine—both to establish the reliability of a method in principle and to assess its implementation in practice. No one argues that measuring or reporting clinical error rates is inappropriate because they might not perfectly reflect the situation for a specific patient. If

transparency about error rates is appropriate for matching blood types before a transfusion, it is appropriate for matching forensic samples—where errors may have similar life-threatening consequences.

We return to this topic in Chapter 8, where we observe that the DOJ’s recent proposed guidelines on expert testimony are based, in part, on this scientifically inappropriate view.

4.8 Empirical Views in the Forensic Community

Although some in the forensic community continue to hold views such as those described in the previous section, a growing segment of the forensic science community has responded to the 2009 NRC report with an increased recognition of the need for empirical studies and with initial efforts to undertake them. Examples include published research studies by forensic scientists, assessments of research needs by Scientific Working Groups and OSAC committees, and statements from the NCFS.

Below we highlight several examples from recent papers by forensic scientists:

- Researchers at the National Academy of Sciences and elsewhere (e.g., Saks & Koehler, 2005; Spinney, 2010) have argued that there is an urgent need to develop objective measures of accuracy in fingerprint identification. Here we present such data.\(^{153}\)

- Tool mark impression evidence, for example, has been successfully used in courts for decades, but its examination has lacked scientific, statistical proof that would independently corroborate conclusions based on morphology characteristics (2–7). In our study, we will apply methods of statistical pattern recognition (i.e., machine learning) to the analysis of toolmark impressions.\(^{154}\)

- The NAS report calls for further research in the area of bitemarks to demonstrate that there is a level of probative value and possibly restricting the use of analyses to the exclusion of individuals. This call to respond must be heard if bite-mark evidence is to be defensible as we move forward as a discipline.\(^{155}\)

- The National Research Council of the National Academies and the legal and forensic sciences communities have called for research to measure the accuracy and reliability of latent print examiners’ decisions, a challenging and complex problem in need of systematic analysis. Our research is focused on the development of empirical approaches to studying this problem.\(^{156}\)

• We believe this report should encourage the legal community to require that the emerging field of forensic neuroimaging, including fMRI based lie detection, have a proper scientific foundation before being admitted in courts.157

• An empirical solution which treats the system [referring to voiceprints] as a black box and its output as point values is therefore preferred.158

Similarly, the OSAC and other groups have acknowledged critical research gaps in the evidence supporting various forensic science disciplines and have begun to develop plans to close some of these gaps. We highlight several examples below:

• While validation studies of firearms and toolmark analysis schemes have been conducted, most have been relatively small data sets. If a large study were well designed and has sufficient participation, it is our anticipation that similar lessons could be learned for the firearms and toolmark discipline.159

• We are unaware of any study that assesses the overall firearm and toolmark discipline’s ability to correctly/consistently categorize evidence by class characteristics, identify subclass marks, and eliminate items using individual characteristics.160

• Currently there is not a reliable assessment of the discriminating strength of specific friction ridge feature types.161

• To date there is little scientific data that quantifies the overall risk of close non-matches in AFIS databases. It is difficult to create standards regarding sufficiency for examination or AFIS search searching without this type of research.162

• Research is needed that studies whether sequential unmasking reduces the negative effects of bias during latent print examination.163

• The IAI has, for many years, sought support for research that would scientifically validate many of the comparative analyses conducted by its member practitioners. While there is a great deal of empirical evidence to support these exams, independent validation has been lacking.164

The National Commission on Forensic Science has similarly recognized the need for rigorous empirical evaluation of forensic methods in a Views Document approved by the commission:

\textit{All forensic science methodologies should be evaluated by an independent scientific body to characterize their capabilities and limitations in order to accurately and reliably answer a specific and clearly defined forensic question.}165

PCAST applauds this growing focus on empirical evidence. We note that increased research funding will be needed to achieve these critical goals (see Chapter 6).

4.9 Summary of Scientific Findings

We summarize our scientific findings concerning the scientific criteria for foundational validity and validity as applied.

\textbf{Finding 1: Scientific Criteria for Scientific Validity of a Forensic Feature-Comparison Method}

\textbf{(1) Foundational validity.} To establish foundational validity for a forensic feature-comparison method, the following elements are required:

(a) a reproducible and consistent procedure for (i) identifying features in evidence samples; (ii) comparing the features in two samples; and (iii) determining, based on the similarity between the features in two sets of features, whether the samples should be declared to be likely to come from the same source (“matching rule”); and

(b) empirical estimates, from appropriately designed studies from multiple groups, that establish (i) the method’s false positive rate—that is, the probability it declares a proposed identification between samples that actually come from different sources and (ii) the method’s sensitivity—that is, the probability it declares a proposed identification between samples that actually come from the same source.

As described in Box 4, scientific validation studies should satisfy a number of criteria: (a) they should be based on sufficiently large collections of known and representative samples from relevant populations; (b) they should be conducted so that the examinees have no information about the correct answer; (c) the study design and analysis plan should be specified in advance and not modified afterwards based on the results; (d) the study should be conducted or overseen by individuals or organizations with no stake in the outcome; (e) data, software and results should be available to allow other scientists to review the conclusions; and (f) to ensure that the results are robust and reproducible, there should be multiple independent studies by separate groups reaching similar conclusions.

Once a method has been established as foundationally valid based on adequate empirical studies, claims about the method’s accuracy and the probative value of proposed identifications, in order to be valid, must be based on such empirical studies.

For objective methods, foundational validity can be established by demonstrating the reliability of each of the individual steps (feature identification, feature comparison, matching rule, false match probability, and sensitivity).

For subjective methods, foundational validity can be established only through black-box studies that measure how often many examiners reach accurate conclusions across many feature-comparison problems involving samples representative of the intended use. In the absence of such studies, a subjective feature-comparison method cannot be considered scientifically valid.

Foundational validity is a sine qua non, which can only be shown through empirical studies. Importantly, good professional practices—such as the existence of professional societies, certification programs, accreditation programs, peer-reviewed articles, standardized protocols, proficiency testing, and codes of ethics—cannot substitute for empirical evidence of scientific validity and reliability.

(2) Validity as applied. Once a forensic feature-comparison method has been established as foundationally valid, it is necessary to establish its validity as applied in a given case.

As described in Box 5, validity as applied requires that: (a) the forensic examiner must have been shown to be capable of reliably applying the method, as shown by appropriate proficiency testing (see Section 4.6), and must actually have done so, as demonstrated by the procedures actually used in the case, the results obtained, and the laboratory notes, which should be made available for scientific review by others; and (b) assertions about the probative value of proposed identifications must be scientifically valid—including that examiners should report the overall false positive rate and sensitivity for the method established in the studies of foundational validity; demonstrate that the samples used in the foundational studies are relevant to the facts of the case; where applicable, report probative value of the observed match based on the specific features observed in the case; and not make claims or implications that go beyond the empirical evidence.
5. Evaluation of Scientific Validity for Seven Feature-Comparison Methods

In the previous chapter, we described the scientific criteria that a forensic feature-comparison method must meet to be considered scientifically valid and reliable, and we underscored the need for empirical evidence of accuracy and reliability.

In this chapter, we illustrate the meaning of these criteria by applying them to six specific forensic feature-comparison methods: (1) DNA analysis of single-source and simple-mixture samples, (2) DNA analysis of complex-mixture samples, (3) bitemarks, (4) latent fingerprints, (5) firearms identification, and (6) footwear analysis.¹⁶⁶ For a seventh forensic feature-comparison method, hair analysis, we do not undertake a full evaluation, but review a recent evaluation by the DOJ.

We evaluate whether these methods have been established to be foundationally valid and reliable and, if so, what estimates of accuracy should accompany testimony concerning a proposed identification, based on current scientific studies. We also briefly discuss some issues related to validity as applied.

PCAST compiled a list of 2019 papers from various sources—including bibliographies prepared by the National Science and Technology Council’s Subcommittee on Forensic Science, the relevant Scientific Working Groups (predecessors to the current OSAC),¹⁶⁷ and the relevant OSAC committees; submissions in response to PCAST’s request for information from the forensic-science stakeholder community; and our own literature searches.¹⁶⁸ PCAST members and staff identified and reviewed those papers that were relevant to establishing scientific validity. After reaching a set of initial conclusions, input was obtained from the FBI Laboratory and individual scientists at NIST, as well as other experts—including asking them to identify additional papers supporting scientific validity that we might have missed.

For each of the methods, we provide a brief overview of the methodology, discuss background information and studies, and review evidence for scientific validity.

As discussed in Chapter 4, objective methods have well-defined procedures to (1) identify the features in samples, (2) measure the features, (3) determine whether the features in two samples match to within a stated measurement tolerance (matching rule), and (4) estimate the probability that samples from different sources would match (false match probability). It is possible to examine each of these separate steps for their validity

¹⁶⁶ The American Association for the Advancement of Science (AAAS) is conducting an analysis of the underlying scientific bases for the forensic tools and methods currently used in the criminal justice system. As of September 1, 2016 no reports have been issued. See: www.aaas.org/page/forensic-science-assessments-quality-and-gap-analysis.
¹⁶⁸ See: www.whitehouse.gov/sites/default/files/microsites/ostp/PCAST/pcast_forensics_references.pdf.
and reliability. Of the six methods considered in this chapter, only the first two methods (involving DNA analysis) employ objective methods. The remaining four methods are subjective.

For subjective methods, the procedures are not precisely defined, but rather involve substantial expert human judgment. Examiners may focus on certain features while ignoring others, may compare them in different ways, and may have different standards for declaring proposed identification between samples. As described in Chapter 4, the sole way to establish foundational validity is through multiple independent “black-box” studies that measure how often examiners reach accurate conclusions across many feature-comparison problems involving samples representative of the intended use. In the absence of such studies, a feature-comparison method cannot be considered scientifically valid.

PCAST found few black-box studies appropriately designed to assess scientific validity of subjective methods. Two notable exceptions, discussed in this chapter, were a study on latent fingerprints conducted by the FBI Laboratory and a study on firearms identification sponsored by the Department of Defense and conducted by the Department of Energy’s Ames Laboratory.

We considered whether proficiency testing, which is conducted by commercial organizations for some disciplines, could be used to establish foundational validity. We concluded that it could not, at present, for several reasons. First, proficiency tests are not intended to establish foundational validity. Second, the test problems or test sets used in commercial proficiency tests are not at present routinely made public—making it impossible to ascertain whether the tests appropriately assess the method across the range of applications for which it is used. The publication and critical review of methods and data is an essential component in establishing scientific validity. Third, the dominant company in the market, Collaborative Testing Services, Inc. (CTS), explicitly states that its proficiency tests are not appropriate for estimating error rates of a discipline, because (a) the test results, which are open to anyone, may not reflect the skills of forensic practitioners and (b) “the reported results do not reflect ‘correct’ or ‘incorrect’ answers, but rather responses that agree or disagree with the consensus conclusions of the participant population.” Fourth, the tests for forensic feature-comparison methods typically consist of only one or two problems each year. Fifth, “easy tests are favored by the community,” with the result that tests that are too challenging could jeopardize repeat business for a commercial vendor.

170 PCAST thanks Collaborative Testing Services, Inc. (CTS) President Christopher Czyryca for helpful conversations concerning proficiency testing. Czyryca explained that that (1) CTS defines consensus as at least 80 percent agreement among respondents and (2) proficiency testing for latent fingerprints only occasionally involves a problem in which a questioned print matches none of the possible answers. Czyryca noted that the forensic community disfavors more challenging tests—and that testing companies are concerned that they could lose business if their tests are viewed as too challenging. An example of a “challenging” test is the very important scenario in which none of the questioned samples match any of the known samples: because examiners may expect they should find some matches, such scenarios provide an opportunity to assess how often examiners declare false-positive matches. (See also presentation to the National Commission on Forensic Science by CTS President Czyryca, noting that “Easy tests are favored by the community.” www.justice.gov/ncfs/file/761061/download.)
PCAST’s observations and findings below are largely consistent with the conclusions of earlier NRC reports.171

5.1 DNA Analysis of Single-source and Simple-mixture samples

DNA analysis of single-source and simple mixture samples includes excellent examples of objective methods whose foundational validity has been properly established.172

Methodology

DNA analysis involves comparing DNA profiles from different samples to see if a known sample may have been the source of an evidentiary sample.

To generate a DNA profile, DNA is first chemically *extracted* from a sample containing biological material, such as blood, semen, hair, or skin cells. Next, a predetermined set of DNA segments (“loci”) containing small repeated sequences173 are *amplified* using the Polymerase Chain Reaction (PCR), an enzymatic process that replicates a targeted DNA segment over and over to yield millions of copies. After amplification, the lengths of the resulting DNA fragments are *measured* using a technique called capillary electrophoresis, which is based on the fact that longer fragments move more slowly than shorter fragments through a polymer solution. The raw data collected from this process are analyzed by a software program to produce a graphical image (an electropherogram) and a list of numbers (the DNA profile) corresponding to the sizes of the each of fragments (by comparing them to known “molecular size standards”).

As currently practiced, the method uses 13 specific loci and the amplification process is designed so that the DNA fragments corresponding to different loci occupy different size ranges—making it simple to recognize which fragments come from each locus.174 At each locus, every human carries two variants (called “alleles”)—one inherited from his or her mother, one from his or her father—that may be of different lengths or the same length.175

172 Forensic DNA analysis belongs to two parent disciplines—metrology and human molecular genetics—and has benefited from the extensive application of DNA technology in biomedical research and medical application.

173 The repeats, called short tandem repeats (STRs), consist of consecutive repeated copies of a segment of 2-6 base pairs.

174 The current kit used by the FBI (Identifiler Plus) has 16 total loci: 15 STR loci and the amelogenin locus. A kit that will be implemented later this year has 24 loci.

175 The FBI announced in 2015 that it plans to expand the core loci by adding seven additional loci commonly used in databases in other countries. (Population data have been published for the expanded set, including frequencies in 11 ethnic populations www.fbi.gov/about-us/lab/biometric-analysis/codis/expanded-fbi-str-2015-final-6-16-15.pdf.) Starting in 2017, these loci will be required for uploading and searching DNA profiles in the national system. The expanded data in each profile are expected to provide greater discrimination potential for identification, especially in matching samples with only partial DNA profiles, missing person inquiries, and international law enforcement and counterterrorism cases.
Analysis of single-source samples

DNA analysis of a sample from a single individual is an objective method. In addition to the laboratory protocols being precisely defined, the interpretation also involves little or no human judgment.

An examiner can assess if a sample came from a single source based on whether the DNA profile typically contains, for each locus, exactly one fragment from each chromosome containing the locus—which yields one or two distinct fragment lengths from each locus.\(^{176}\) The DNA profile can then be compared with the DNA profile of a known suspect. It can also be entered into the FBI’s National DNA Index System (NDIS) and searched against a database of DNA profiles from convicted offenders (and arrestees in more than half of the states) or unsolved crimes.

Two DNA profiles are declared to match if the lists of alleles are the same.\(^ {177}\) The probability that two DNA profiles from different sources would have the same DNA profile (the random match probability) is then calculated based on the empirically measured frequency of each allele and established principles of population genetics (see p. 53).\(^ {178}\)

Analysis of simple mixtures

Many sexual assault cases involve DNA mixtures of two individuals, where one individual (i.e., the victim) is known. DNA analysis of these simple mixtures is also relatively straightforward. Methods have been used for 30 years to differentially extract DNA from sperm cells vs. vaginal epithelial cells, making it possible to generate DNA profiles from the two sources. Where the two cell types are the same but one contributor is known, the alleles of the known individual can be subtracted from the set of alleles identified in the mixture.\(^ {179}\)

Once the known source is removed, the analysis of the unknown sample then proceeds as above for single-source samples. Like the analysis of single-source samples, the analysis of simple mixtures is a largely objective method.

\(^{176}\) The examiner reviews the electropherogram to determine whether each of the peaks is a true allelic peak or an artifact (e.g., background noise in the form of stutter, spikes, and other phenomena) and to determine whether more than one individual could have contributed to the profile. In rare cases, an individual may have two fragments at a locus due to rare copy-number variation in the human genome.

\(^{177}\) When only a partial profile could be generated from the evidence sample (for example, in cases with limited quantities of DNA, degradation of the sample, or the presence of PCR inhibitors), an examiner may also report an “inclusion” if the partial profile is consistent with the DNA profile obtained from a reference sample. An examiner may also report an inclusion when the DNA results from a reference sample are present in a mixture. These cases generally require significantly more human analysis and interpretation than single-source samples.

\(^{178}\) Random match probabilities can also be expressed in terms of a likelihood ratio (LR), which is the ratio of (1) the probability of observing the DNA profile if the individual in question is the source of the DNA sample and (2) the probability of observing the DNA profile if the individual in question is not the source of the DNA sample. In the situation of a single-source sample, the LR should be simply the reciprocal of the random match probability (because the first probability in the LR is 1 and the second probability is the random match probability).

\(^{179}\) In many cases, DNA will be present in the mixture in sufficiently different quantities so that the peak heights in the electropherogram from the two sources will be distinct, allowing the examiner to more readily separate out the sources.
Foundational Validity

To evaluate the foundational validity of an objective method (such as single-source and simple mixture analysis), one can examine the reliability of each of the individual steps rather than having to rely on black-box studies.

Single-source samples
Each step in the analysis is objective and involves little or no human judgment.

(1) Feature identification. In contrast to the other methods discussed in this report, the features used in DNA analysis (the fragments lengths of the loci) are defined in advance.

(2) Feature measurement and comparison. PCR amplification, invented in 1983, is widely used by tens of thousands of molecular biology laboratories, including for many medical applications in which it has been rigorously validated. Multiplex PCR kits designed by commercial vendors for use by forensic laboratories must be validated both externally (through developmental validation studies published in peer reviewed publication) and internally (by each lab that wishes to use the kit) before they may be used. Fragment sizes are measured by an automated procedure whose variability is well characterized and small; the standard deviation is approximately 0.05 base pairs, which provides highly reliable measurements. Developmental validation studies were performed—including by the FBI—to verify the accuracy, precision, and reproducibility of the procedure.
(3) **Feature comparison.** For single-source samples, there are clear and well-specified “matching rules” for declaring whether the DNA profiles match. When complete DNA profiles are searched against the NDIS at “high stringency,” a “match” is returned only when each allele in the unknown profile is found to match an allele of the known profile, and *vice versa*. When partial DNA profiles obtained from a partially degraded or contaminated sample are searched at “moderate stringency,” candidate profiles are returned if each of the alleles in the unknown profile is found to match an allele of the known profile.\(^{185,186}\)

(4) **Estimation of random match probability.** The process for calculating the random match probability (that is, the probability of a match occurring by chance) is based on well-established principles of population genetics and statistics. The frequencies of the individual alleles were obtained by the FBI based on DNA profiles from approximately 200 unrelated individuals from each of six population groups and were evaluated prior to use.\(^{187}\) The frequency of an overall pattern of alleles—that is, the random match probability—is typically estimated by multiplying the frequencies of the individual loci, under the assumption that the alleles are independent of one another.\(^{188}\) The resulting probability is typically less than 1 in 10 billion, excluding the possibility of close relatives.\(^{189}\) (Note: Multiplying the frequency of alleles can overstates the rarity of a pattern because the alleles are not completely independent, owing of false positive or false negative results and no substantial evidence of preferential amplification within a locus were found for any of the testing kits. Moretti, T.R., Baumstark, A.L., Defenbaugh, D.A., Keys, K.M., Smerick, J.B., and B. Budowle. “Validation of Short Tandem Repeats (STRs) for forensic usage: performance testing of fluorescent multiplex STR systems and analysis of authentic and simulated forensic samples.” *Journal of Forensic Sciences*, Vol. 46, No. 3 (2001): 647-60.\(^{185}\) See: FBI’s Frequently Asked Questions (FAQs) on the CODIS Program and the National DNA Index System. www.fbi.gov/about-us/lab/biometric-analysis/codis/codis-and-ndis-fact-sheet.\(^{186}\) Contaminated samples are not retained in NDIS.\(^{187}\)

\(^{186}\) Contaminated samples are not retained in NDIS.

\(^{187}\) The initial population data generated by FBI included data for 6 ethnic populations with database sizes of 200 individuals. See: Budowle, B., Moretti, T.R., Baumstark, A.L., Defenbaugh, D.A., and K.M. Keys. “Population data on the thirteen CODIS core short tandem repeat loci in African Americans, U.S. Caucasians, Hispanics, Bahamians, Jamaicans, and Trinidadians.” *Journal of Forensic Sciences*, Vol. 44, No. 6 (1999): 1277-86 and Budowle, B., Shea, B., Niezgoda, S., and R. Chakraborty. “CODIS STR loci data from 41 sample populations.” *Journal of Forensic Sciences*, Vol. 46, No. 3 (2001): 453-89. Errors in the original database were reported in July 2015 (Erratum, *Journal of Forensic Sciences*, Vol. 60, No. 4 (2015): 1114-6, the impact of these discrepancies on profile probability calculations were assessed (and found to be less than a factor of 2 in a full profile), and the allele frequency estimates were amended accordingly. At the same time as amending the original datasets, the FBI Laboratory also published expanded datasets in which the original samples were retyped for additional loci. In addition, the population samples that were originally studied at other laboratories were typed for additional loci, so the full dataset includes 9 populations. These “expanded” datasets are in use at the FBI Laboratory and can be found at www.fbi.gov/about-us/lab/biometric-analysis/codis/expanded-fbi-str-final-6-16-15.pdf.

\(^{188}\) More precisely, the frequency at each locus is calculated first. If the locus has two copies of the same allele with frequency p, the frequency is calculated as p^2. If the locus has two different alleles with respective frequencies p and q, the frequency is calculated as 2pq. The frequency of the overall pattern is calculated by multiplying together the values for the individual loci.

\(^{189}\) The random match probability will be higher for close relatives. For identical twins, the DNA profiles are expected to match perfectly. For first degree relatives, the random match probability may be on the order of 1 in 100,000 when examining the 13 CODIS core STR loci. See: Butler, J.M. “The future of forensic DNA analysis.” *Philosophical Transactions of the Royal Society B*, 370: 20140252 (2015).
to population substructure. A 1996 NRC report concluded that the effect of population substructure on the calculated value was likely to be within a factor of 10 (for example, for a random match probability estimate of 1 in 10 million, the true probability is highly likely to be between 1 in 1 million and 1 in 100 million). However, a recent study by NIST scientists suggests that the variation may be substantially greater than 10-fold. The random match probability should be calculated using an appropriate statistical formula that takes account of population substructure.

Simple mixtures

The steps for analyzing simple mixtures are the same as for analyzing single-source samples, up until the point of interpretation. DNA profiles that contain a mixture of two contributors, where one contributor is known, can be interpreted in much the same way as single-source samples. This occurs frequently in sexual assault cases, where a DNA profile contains a mixture of DNA from the victim and the perpetrator. Methods that are used to differentially extract DNA from sperm cells vs. vaginal epithelial cells in sexual assault cases are well-established. Where the two cell types are the same, one DNA source may be dominant, resulting in a distinct contrast in peak heights between the two contributors; in these cases, the alleles from both the major contributor (corresponding to the larger allelic peaks) and the minor contributor can usually be reliably interpreted, provided the proportion of the minor contributor is not too low.

Validity as Applied

While DNA analysis of single-source samples and simple mixtures is a foundationally valid and reliable method, it is not infallible in practice. Errors can and do occur in DNA testing. Although the probability that two samples from different sources have the same DNA profile is tiny, the chance of human error is much higher. Such errors may stem from sample mix-ups, contamination, incorrect interpretation, and errors in reporting.

195 Krimsky, S., and T. Simoncelli. *Genetic Justice: DNA Data Banks, Criminal Investigations, and Civil Liberties*. Columbia University Press, (2011). Perhaps the most spectacular human error to date involved the German government’s investigation of the “Phantom of Heilbronn,” a woman whose DNA appeared at the scenes of more than 40 crimes in three countries, including 6 murders, several muggings and dozens of break-ins over the course of more than a decade. After an effort that included analyzing DNA samples from more than 3,000 women from four countries and that cost $18 million, authorities discovered that the woman of interest was a worker in the Austrian factory that fabricated the swabs used in DNA collection. The woman had inadvertently contaminated a large number of swabs with her own DNA, which was thus found in many DNA tests.
To minimize human error, the FBI requires, as a condition of participating in NDIS, that laboratories follow the FBI’s Quality Assurance Standards (QAS). Before the results of the DNA analysis can be compared, the examiner is required to run a series of controls to check for possible contamination and ensure that the PCR process ran properly. The QAS also requires semi-annual proficiency testing of all DNA analysts that perform DNA testing for criminal cases. The results of the tests do not have to be published, but the laboratory must retain the results of the tests, any discrepancies or errors made, and corrective actions taken.

Forensic practitioners in the U.S. do not typically report quality issues that arise in forensic DNA analysis. By contrast, error rates in medical DNA testing are commonly measured and reported. Refreshingly, a 2014 paper from the Netherlands Forensic Institute (NFI), a government agency, reported a comprehensive analysis of all “quality issue notifications” encountered in casework, categorized by type, source and impact. The authors call for greater “transparency” and “culture change,” writing that:

Forensic DNA casework is conducted worldwide in a large number of laboratories, both private companies and in institutes owned by the government. Quality procedures are in place in all laboratories, but the nature of the quality system varies a lot between the different labs. In particular, there are many forensic DNA laboratories that operate without a quality issue notification system like the one described in this paper. In our experience, such a system is extremely important for the detection and proper handling of errors. This is crucial in forensic casework that can have a major impact on people’s lives. We therefore propose that the implementation of a quality issue notification system is necessary for any laboratory that is involved in forensic DNA casework.

Such system can only work in an optimal way, however, when there is a blame-free culture in the laboratory that extends to the police and the legal justice system. People have a natural tendency to hide their mistakes, and it is essential to create an atmosphere where there are no adverse personal consequences when mistakes are reported. The management should take the lead in this culture change...

As far as we know, the NFI is the first forensic DNA laboratory in the world to reveal such detailed data and reports. It shows that this is possible without any disasters or abuse happening, and there are no

197 Ibid., Sections 12, 13, and 14.

200 The Netherlands uses an “inquisitorial” approach to method of criminal justice rather than the adversarial system used in the U.S. Concerns about having to explain quality issues in court may explain in part why U.S. laboratories do not routinely report quality issues.
reasons for nondisclosure. As mentioned in the introduction, in laboratory medicine publication of data on error rates has become standard practice. Quality failure rates in this domain are comparable to ours.

Finally, we note that there is a need to improve proficiency testing. There are currently no requirements concerning how challenging the proficiency tests should be. The tests should be representative of the full range of situations likely to be encountered in casework.

Finding 2: DNA Analysis

Foundational validity. PCAST finds that DNA analysis of single-source samples or simple mixtures of two individuals, such as from many rape kits, is an objective method that has been established to be foundationally valid.

Validity as applied. Because errors due to human failures will dominate the chance of coincidental matches, the scientific criteria for validity as applied require that an expert (1) should have undergone rigorous and relevant proficiency testing to demonstrate their ability to reliably apply the method, (2) should routinely disclose in reports and testimony whether, when performing the examination, he or she was aware of any facts of the case that might influence the conclusion, and (3) should disclose, upon request, all information about quality testing and quality issues in his or her laboratory.

5.2 DNA Analysis of Complex-mixture Samples

Some investigations involve DNA analysis of complex mixtures of biological samples from multiple unknown individuals in unknown proportions. Such samples might arise, for example, from mixed blood stains. As DNA testing kits have become more sensitive, there has been growing interest in “touch DNA”—for example, tiny quantities of DNA left by multiple individuals on a steering wheel of a car.

Methodology

The fundamental difference between DNA analysis of complex-mixture samples and DNA analysis of single-source and simple mixtures lies not in the laboratory processing, but in the interpretation of the resulting DNA profile.

DNA analysis of complex mixtures—defined as mixtures with more than two contributors—is inherently difficult and even more for small amounts of DNA. Such samples result in a DNA profile that superimposes multiple individual DNA profiles. Interpreting a mixed profile is different for multiple reasons: each individual may contribute two, one or zero alleles at each locus; the alleles may overlap with one another; the peak heights may differ considerably, owing to differences in the amount and state of preservation of the DNA from each source; and the “stutter peaks” that surround alleles (common artifacts of the DNA amplification process) can

201 See, for example, SWGDAM document on interpretation of DNA mixtures. www.swgdam.org/#Public-comments/c1t82.
obscure alleles that are present or suggest alleles that are not present.202 It is often impossible to tell with certainty which alleles are present in the mixture or how many separate individuals contributed to the mixture, let alone accurately to infer the DNA profile of each individual.203

Instead, examiners must ask: “Could a suspect’s DNA profile be present within the mixture profile? And, what is the probability that such an observation might occur by chance?” The questions are challenging for the reasons given above. Because many different DNA profiles may fit within some mixture profiles, the probability that a suspect “cannot be excluded” as a possible contributor to complex mixture may be much higher (in some cases, millions of times higher) than the probabilities encountered for matches to single-source DNA profiles. As a result, proper calculation of the statistical weight is critical for presenting accurate information in court.

Subjective Interpretation of Complex Mixtures

Initial approaches to the interpretation of complex mixtures relied on subjective judgment by examiners, together with the use of simplified statistical methods such as the “Combined Probability of Inclusion” (CPI). These approaches are problematic because subjective choices made by examiners, such as about which alleles to include in the calculation, can dramatically alter the result and lead to inaccurate answers.

The problem with subjective analysis of complex-mixture samples is illustrated by a 2003 double-homicide case, \textit{Winston v. Commonwealth}.204 A prosecution expert reported that the defendant could not be excluded as a possible contributor to DNA on a discarded glove that contained a mixed DNA profile of at least three contributors; the defendant was convicted and sentenced to death. The prosecutor told the jury that the chance the match occurred by chance was 1 in 1.1 billion. A 2009 paper, however, makes a reasonable scientific case that that the chance is closer to 1 in 2—that is, 50 percent of the relevant population could not be excluded.205 Such a large discrepancy is unacceptable, especially in cases where a defendant was sentenced to death.

Two papers clearly demonstrate that these commonly used approaches for DNA analysis of complex mixtures can be problematic. In a 2011 study, Dror and Hampikian tested whether irrelevant contextual information biased their conclusions of examiners, using DNA evidence from an actual adjudicated criminal case (a gang rape case in Georgia).206 In this case, one of the suspects implicated another in connection with a plea bargain. The two experts who examined evidence from the crime scene were aware of this testimony against the suspect and knew that the plea bargain testimony could be used in court only with corroborating DNA evidence. Due to the

204 \textit{Winston v. Commonwealth}, 604 S.E.2d 21 (Va. 2004).

205 Thompson, W.C. “Painting the target around the matching profile: the Texas sharpshooter fallacy in forensic DNA interpretation.” \textit{Law, Probability and Risk}, Vol. 8, No. 3 (2009): 257-76.

complex nature of the DNA mixture collected from the crime scene, the analysis of this evidence required judgment and interpretation on the part of the examiners. The two experts both concluded that the suspect could not be excluded as a contributor.

Dror and Hampikian presented the original DNA evidence from this crime to 17 expert DNA examiners, but without any of the irrelevant contextual information. They found that only 1 out of the 17 experts agreed with the original experts who were exposed to the biasing information (in fact, 12 of the examiners excluded the suspect as a possible contributor).

In another paper, de Keijser and colleagues presented 19 DNA experts with a mock case involving an alleged violent robbery outside a bar:

There is a male suspect, who denies any wrongdoing. The items that were sampled for DNA analysis are the shirt of the (alleged) female victim (who claims to have been grabbed by her assailant), a cigarette butt that was picked up by the police and that was allegedly smoked by the victim and/or the suspect, and nail clippings from the victim, who claims to have scratched the perpetrator.

Although all the experts were provided the same DNA profiles (prepared from the three samples above and the two people), their conclusions varied wildly. One examiner excluded the suspect as a possible contributor, while another examiner declared a match between the suspect’s profile and a few minor peaks in the mixed profile from the nails—reporting a random match probability of roughly 1 in 209 million. Still other examiners declared the evidence inconclusive.

In the summer of 2015, a remarkable chain of events in Texas revealed that the problems with subjective analysis of complex DNA mixtures were not limited to a few individual cases: they were systemic. The Texas Department of Public Safety (TX-DPS) issued a public letter on June 30, 2015 to the Texas criminal justice community noting that (1) the FBI had recently reported that it had identified and corrected minor errors in its population databases used to calculate statistics in DNA cases, (2) the errors were not expected to have any significant effect on results, and (2) the TX-DPS Crime Laboratory System would, upon request, recalculate statistics previously reported in individual cases.

When several prosecutors submitted requests for recalculation to TX-DPS and other laboratories, they were stunned to find that the statistics had changed dramatically—e.g., *from 1 in 1.4 billion to 1 in 36 in one case,* *from 1 in 4000 to inconclusive in another.* These prosecutors sought the assistance of the Texas Forensic Science Commission (TFSC) in understanding the reason for the change and the scope of potentially affected cases.

208 Relevant documents and further details can be found at www.fsc.texas.gov/texas-dna-mixture-interpretation-case-review. Lynn Garcia, General Counsel for the Texas Forensic Science Commission, also provided a helpful summary to PCAST.
In consultation with forensic DNA experts, the TFSC determined that the large shifts observed in some cases were unrelated to the minor corrections in the FBI’s population database, but rather were due to the fact that forensic laboratories had changed the way in which they calculated the CPI statistic—especially how they dealt with phenomena such as “allelic dropout” at particular DNA loci.

The TFSC launched a statewide DNA Mixture Notification Subcommittee, which included representatives of conviction integrity units, district and county attorneys, defense attorneys, innocence projects, the state attorney general, and the Texas governor. By September 2015, the TX-DPS had generated a county-by-county list of more than 24,000 DNA mixture cases analyzed from 1999-2015. Because TX-DPS is responsible for roughly half of the casework in the state, the total number of Texas DNA cases requiring review may exceed 50,000. (Although comparable efforts have not been undertaken in other states, the problem is likely to be national in scope, rather than specific to forensic laboratories in Texas.)

The TFSC also convened an international panel of scientific experts—from the Harvard Medical School, the University of North Texas Health Science Center, New Zealand’s forensic research unit, and NIST—to clarify the proper use of CPI. These scientists presented observations at a public meeting, where many attorneys learned for the first time the extent to which DNA-mixture analysis involved subjective interpretation. Many of the problems with the CPI statistic arose because existing guidelines did not clearly, adequately, or correctly specify the proper use or limitations of the approach.

In summary, the interpretation of complex DNA mixtures with the CPI statistic has been an inadequately specified—and thus inappropriately subjective—method. As such, the method is clearly not foundationally valid.

In an attempt to fill this gap, the experts convened by TFSC wrote a joint scientific paper, which was published online on August 31, 2016.209 The paper underscores the “pressing need . . . for standardization of an approach, training and ongoing testing of DNA analysts.” The authors propose a set of specific rules for the use of the CPI statistic.

The proposed rules are clearly necessary for a scientifically valid method for the application of CPI. Because the paper appeared just as this report was being finalized, PCAST has not had adequate time to assess whether the rules are also sufficient to define an objective and scientifically valid method for the application of CPI.

Current Efforts to Develop Objective Methods

Given these problems, several groups have launched efforts to develop “probabilistic genotyping” computer programs that apply various algorithms to interpret complex mixtures. As of March 2014, at least 8 probabilistic genotyping software programs had been developed (called LRmix, Lab Retriever, likeLTD, FST, Armed Xpert, TrueAllele, STRmix, and DNA View Mixture Solution), with some being open source software and some being

commercial products. The FBI Laboratory began using the STRmix program less than a year ago, in December 2015, and is still in the process of publishing its own internal developmental validation.

These probabilistic genotyping software programs clearly represent a major improvement over purely subjective interpretation. However, they still require careful scrutiny to determine (1) whether the methods are scientifically valid, including defining the limitations on their reliability (that is, the circumstances in which they may yield unreliable results) and (2) whether the software correctly implements the methods. This is particularly important because the programs employ different mathematical algorithms and can yield different results for the same mixture profile.

Appropriate evaluation of the proposed methods should consist of studies by multiple groups, not associated with the software developers, that investigate the performance and define the limitations of programs by testing them on a wide range of mixtures with different properties. In particular, it is important to address the following issues:

1. How well does the method perform as a function of the number of contributors to the mixture? How well does it perform when the number of contributors to the mixture is unknown?

2. How does the method perform as a function of the number of alleles shared among individuals in the mixture? Relatedly, how does it perform when the mixtures include related individuals?

3. How well does the method perform—and how does accuracy degrade—as a function of the absolute and relative amounts of DNA from the various contributors? For example, it can be difficult to determine whether a small peak in the mixture profile represents a true allele from a minor contributor or a stutter peak from a nearby allele from a different contributor. (Notably, this issue underlies a current case that has received considerable attention.)

211 Some programs use discrete (semi-continuous) methods, which use only allele information in conjunction with probabilities of allelic dropout and dropin, while other programs use continuous methods, which also incorporate information about peak height and other information. Within these two classes, the programs differ with respect to how they use the information. Some of the methods involve making assumptions about the number of individuals contributing to the DNA profile, and use this information to clean up noise (such as “stutter” in DNA profiles).

212 In this case, examiners used two different DNA software programs (STRMix and TrueAllele) and obtained different conclusions concerning whether DNA from the defendant could be said to be included within the low-level DNA mixture profile obtained from a sample collected from one of the victim’s fingernails. The judge ruled that the DNA evidence implicating the defendant was inadmissible. McKinley, J. “Potsdam Boy’s Murder Case May Hinge on Minuscule DNA Sample From Fingernail.” *New York Times.* See: www.nytimes.com/2016/07/25/nyregion/potsdam-boys-murder-case-may-hinge-on-statistical-analysis.html (accessed August 22, 2016). Sommerstein, D. “DNA results will not be allowed in Hillary murder trail.” North Country Public Radio (accessed September 1, 2016). The decision can be found here: www.northcountrypublicradio.org/assets/files/08-26-16DecisionandOrder-DNAAnalysisAdmissibility.pdf.
(4) Under what circumstances—and why—does the method produce results (random inclusion probabilities) that differ substantially from those produced by other methods?

A number of papers have been published that analyze known mixtures in order to address some of these issues.213 Two points should be noted about these studies. First, most of the studies evaluating software packages have been undertaken by the software developers themselves. While it is completely appropriate for method developers to evaluate their own methods, establishing scientific validity also requires scientific evaluation by other scientific groups that did not develop the method. Second, there have been few comparative studies across the methods to evaluate the differences among them—and, to our knowledge, no comparative studies conducted by independent groups.214

Most importantly, current studies have adequately explored only a limited range of mixture types (with respect to number of contributors, ratio of minor contributors, and total amount of DNA). The two most widely used methods (STRMix and TrueAllele) appear to be reliable within a certain range, based on the available evidence and the inherent difficulty of the problem.215 Specifically, these methods appear to be reliable for three-person mixtures in which the minor contributor constitutes at least 20 percent of the intact DNA in the mixture and in which the DNA amount exceeds the minimum level required for the method.216

216 Such three-person samples involving similar proportions are more straightforward to interpret owing to the limited number of alleles and relatively similar peak height. The methods can also be reliably applied to single-source and simple-mixture samples, provided that, in cases where the two contributions cannot be separated by differential extraction, the proportion of the minor contributor is not too low (e.g., at least 10 percent).
For more complex mixtures (e.g. more contributors or lower proportions), there is relatively little published evidence.217 In human molecular genetics, an experimental validation of an important diagnostic method would typically involve hundreds of distinct samples.218 One forensic scientist told PCAST that many more distinct samples have, in fact, been analyzed, but that the data have not yet been collated and published.219 Because empirical evidence is essential for establishing the foundational validity of a method, PCAST urges forensic scientists to submit and leading scientific journals to publish high-quality validation studies that properly establish the range of reliability of methods for the analysis of complex DNA mixtures.

When further studies are published, it will likely be possible to extend the range in which scientific validity has been established to include more challenging samples. As noted above, such studies should be performed by or should include independent research groups not connected with the developers of the methods and with no stake in the outcome.

Conclusion

Based on its evaluation of the published literature to date, PCAST reached several conclusions concerning the foundational validity of methods for the analysis of complex DNA mixtures. We note that foundational validity must be established with respect to a specified method applied to a specified range. In addition to forming its own judgment, PCAST also consulted with John Butler, Special Assistant to the Director for Forensic Science at NIST and Vice Chair of the NCFS.220 Butler concurred with PCAST’s finding.

218 Preparing and performing PCR amplification on hundreds of DNA mixtures is straightforward; it can be accomplished within a few weeks or less.

219 PCAST interview with John Buckleton, Principal Scientist at New Zealand’s Institute of Environmental Science and Research and a co-developer of STRMix.

Finding 3: DNA analysis of complex-mixture samples

Foundational validity. PCAST finds that:

(1) Combined-Probability-of-Inclusion (CPI)-based methods. DNA analysis of complex mixtures based on CPI-based approaches has been an inadequately specified, subjective method that has the potential to lead to erroneous results. As such, it is not foundationally valid.

A very recent paper has proposed specific rules that address a number of problems in the use of CPI. These rules are clearly necessary. However, PCAST has not adequate time to assess whether they are also sufficient to define an objective and scientifically valid method. If, for a limited time, courts choose to admit results based on the application of CPI, validity as applied would require that, at a minimum, they be consistent with the rules specified in the paper.

DNA analysis of complex mixtures should move rapidly to more appropriate methods based on probabilistic genotyping.

(2) Probabilistic genotyping. Objective analysis of complex DNA mixtures with probabilistic genotyping software is relatively new and promising approach. Empirical evidence is required to establish the foundational validity of each such method within specified ranges. At present, published evidence supports the foundational validity of analysis, with some programs, of DNA mixtures of 3 individuals in which the minor contributor constitutes at least 20 percent of the intact DNA in the mixture and in which the DNA amount exceeds the minimum required level for the method. The range in which foundational validity has been established is likely to grow as adequate evidence for more complex mixtures is obtained and published.

Validity as applied. For methods that are foundationally valid, validity as applied involves similar considerations as for DNA analysis of single-source and simple-mixtures samples, with a special emphasis on ensuring that the method was applied correctly and within its empirically established range.

The Path Forward

There is a clear path for extending the range over which objective methods have been established to be foundationally valid—specifically, through the publication of appropriate scientific studies.

Such efforts will be aided by the creation and dissemination (under appropriate data-use and data-privacy restrictions) of large collections of hundreds of DNA profiles created from known mixtures—representing widely varying complexity with respect to (1) the number of contributors, (2) the relationships among contributors, (3) the absolute and relative amounts of materials, and (4) the state of preservation of materials—that can be used by independent groups to evaluate and compare the methods. Notably, the PROVEDIt Initiative (Project Research Openness for Validation with Experimental Data) at Boston University has made available a resource of
25,000 profiles from DNA mixtures. In addition to scientific studies on common sets of samples for the purpose of evaluating foundational validity, individual forensic laboratories will want to conduct their own internal developmental validation studies to assess the validity of the method in their own hands.

NIST should play a leadership role in this process, by ensuring the creation and dissemination of materials and stimulating studies by independent groups through grants, contracts, and prizes; and by evaluating the results of these studies.

5.3 Bitemark Analysis

Methodology

Bitemark analysis is a subjective method. It typically involves examining marks left on a victim or an object at the crime scene, and comparing those marks with dental impressions taken from a suspect. Bitemark comparison is based on the premises that (1) dental characteristics, particularly the arrangement of the front teeth, differ substantially among people and (2) skin (or some other marked surface at a crime scene) can reliably capture these distinctive features.

Bitemark analysis begins with an examiner deciding whether an injury is a mark caused by human teeth. If so, the examiner creates photographs or impressions of the questioned bitemark and of the suspect’s dentition; compares the bitemark and the dentition; and determines if the dentition (1) cannot be excluded as having made the bitemark, (2) can be excluded as having made the bitemark, or (3) is inconclusive. The bitemark standards do not provide well-defined standards concerning the degree of similarity that must be identified to support a reliable conclusion that the mark could have or could not have been created by the dentition in question. Conclusions about all these matters are left to the examiner’s judgment.

Background Studies

Before turning to the question of foundational validity, we discuss some background studies (concerning such topics as uniqueness and consistency) that shed some light on the field. These studies cast serious doubt on the fundamental premises of the field.

221 See: www.bu.edu/dnamixtures.
222 The collection contains DNA samples with 1- to 5-person DNA mixtures, amplified with targets ranging from 1 to 0.007 ng. In the multi-person mixtures, the ratio of contributors range from 1:1 to 1:19. Additionally, the profiles were generated using a variety of laboratory conditions from samples containing pristine DNA; UV damaged DNA; enzymatically or sonically degraded DNA; and inhibited DNA.
223 The FBI Laboratory has recently completed a developmental validation study and is preparing it for publication.
224 Less frequently, marks are found on a suspected perpetrator that may have come from a victim.
A widely cited 1984 paper claimed that “human dentition was unique beyond any reasonable doubt.” The study examined 397 bitemarks carefully made in a wax wafer, measured 12 parameters from each, and—assuming, without any evidence, that the parameters were uncorrelated with each other—suggested that the chance of two bitemarks having the same parameters is less than one in six trillion. The paper was theoretical rather than empirical: it did not attempt to actually compare the bitemarks to one another.

A 2010 paper debunked these claims. By empirically studying 344 human dental casts and measuring them by three-dimensional laser scanning, these authors showed that matches occurred vastly more often than expected under the theoretical model. For example, the theoretical model predicted that the probability of finding even a single five-tooth match among the collection of bitemarks is less than one in one million; yet, the empirical comparison revealed 32 such matches.

Notably, these studies examined human dentition patterns measured under idealized conditions. By contrast, skin has been shown to be an unreliable medium for recording the precise pattern of teeth. Studies that have involved inflicting bitemarks on living pigs (used as a model of human skin) or human cadavers have demonstrated significant distortion in all directions. A 2010 study of experimentally created bitemarks produced by known biters concluded that skin deformation distorts bitemarks so substantially and so variably that current procedures for comparing bitemarks are unable to reliably exclude or include a suspect as a potential biter (“The data derived showed no correlation and was not reproducible, that is, the same dentition could not create a measurable impression that was consistent in all of the parameters in any of the test circumstances.”) Such distortion is further complicated in the context of criminal cases, where biting often occurs during struggles, in which skin may be stretched and contorted at the time a bitemark is created.

Empirical research suggests that forensic odontologists do not consistently agree even on whether an injury is a human bitemark at all. A study by the American Board of Forensic Odontology (AFBO) involved showing photos of 100 patterned injuries to ABFO board-certified bitemark analysts, and asking them to answer three basic questions concerning (1) whether there was sufficient evidence to render an opinion as to whether the patterned injury is a human bitemark; (2) whether the mark is a human bitemark, suggestive of a human

bitemark, or not a human bitemark; and (3) whether distinct features (arches and toothmarks) were identifiable. Among the 38 examiners who completed the study, it was reported that there was unanimous agreement on the first question in only 4 of the 100 cases and agreement of at least 90 percent in only 20 of the 100 cases. Across all three questions, there was agreement of at least 90 percent in only 8 of the 100 cases.

In a similar study in Australia, 15 odontologists were shown a series of six bitemarks from contemporary cases, five of which were marks confirmed by living victims to have been caused by teeth, and were asked to explain, in narrative form, whether the injuries were, in fact, bitemarks. The study found wide variability among the practitioners in their conclusions about the origin, circumstance, and characteristics of the patterned injury for all six images. Surprisingly, those with the most experience (21 or more years) tended to have the widest range of opinions as to whether a mark was of human dental origin or not. Examiners’ opinions varied considerably as to whether they thought a given mark was suitable for analysis, and individual practitioners demonstrated little consistency in their approach in analyzing one bitemark to the next. The study concluded that this “inconsistency indicates a fundamental flaw in the methodology of bitemark analysis and should lead to concerns regarding the reliability of any conclusions reached about matching such a bitemark to a dentition.”

Studies of Scientific Validity and Reliability

As discussed above, the foundational validity of a subjective method can only be established through multiple independent black-box studies.

The 2009 NRC report found that the scientific validity of bitemark analysis had not been established. In its own review of the literature PCAST found few empirical studies that attempted to study the validity and reliability of the methods to identify the source of a bitemark.

In a 1975 paper, two examiners were asked to match photographs of bitemarks made by 24 volunteers in skin from freshly slaughtered pigs with dental models from these same volunteers. The photographs were taken at 0, 1, and 24 hours after the bitemark was produced. Examiners’ performance was poor and deteriorated with

232 The raw data are made available by the authors upon request. They were reviewed by Professor Karen Kafadar, a member of the panel of Senior Advisors for this study.

234 For example, one examiner expressed certainty that one of the images was a bitemark, stating, “I know from experience that that’s teeth because I did a case at the beginning of the year, that when I first looked at the images I didn’t think they were teeth, because the injuries were so severe. But when I saw the models, and scratched them down my arm, they looked just like that.” Another expressed doubt that the same image was a bitemark, also based on his or her experience: “Honestly I don’t think it’s a bite mark… there could be any number of things that could have caused that. Whether this is individual tooth marks here I doubt. I’ve never seen anything like that.” Ibid., 666.

235 Ibid., 670.

time following the bite. The proportion of photographs incorrectly attributed was 28 percent, 65 percent, and 84 percent at the 0, 1, and 24 hour time points.

In a 1999 paper, 29 forensic dental experts—as well as 80 others, including general dentists, dental students, and lay participants—were shown color prints of human bitemarks from 50 court cases and asked to decide whether each bitemark was made by an adult or a child. The decisions were compared to the verdict from the cases. All groups performed poorly.

In a 2001 paper, 32 AFBO-certified diplomates were asked to report their certainty that 4 specific bitemarks might have come from each of 7 dental models, consisting of the four correct sources and three unrelated samples. Such a “closed-set” design (where the correct source is present for each questioned samples) is inappropriate for assessing reliability, because it will tend to underestimate the false positive rate. Even with this closed-set design, 11 percent of comparisons to the incorrect source were declared to be “probable,” “possible,” or “reasonable medical certainty” matches.

In another 2001 paper, 10 AFBO-certified diplomates were given 10 independent tests, each consisting of bitemark evidence and two possible sources. The evidence was produced by clamping a dental model onto freshly slaughtered pigs, subjectively confirming that “sufficient detail was recorded,” and photographing the bitemark. The correct source was present in all but two of the tests (mostly closed-set design). The mean false positive rate was 15.9 percent—that is, roughly 1 in 6.

In a 2010 paper, 29 examiners with various levels of training (including 9 AFBO-certified diplomates) were provided with photographs of 18 human bitemarks and dentition from three human individuals (A, B, C) and were asked to decide whether the bitemarks came from A, B, C, or none of the above. The bitemarks had been produced in live pigs, using a biting machine with dentition from individuals A, B, and D (for which the dentition was not provided to the examiners). For bitemarks produced by D, the diplomates erroneously declared a match to A, B, or C in 17 percent of cases—again, roughly 1 in 6.

239 The authors asked observers to indicate how certain they were a bitemark was made by an adult, using a 6 point scale. Receiver-Operator Characteristic (ROC) curves were derived from the data. The Area under the Curve (AUC) was calculated for each group (where AUC = 1 represents perfect classification and AUC = 0.5 is equivalent to random decision-making). The Area under the Curve (AUC) was between 0.62-0.69, which is poor.

241 The four bitemarks consisted of three from criminal cases and one produced by an individual deliberately biting into a block of cheese. The seven dental models corresponded to the three defendants convicted in the criminal cases (presumed to be the biters), the individual who bit the cheese, and three unrelated individuals.

242 In closed-set tests, examiners will perform well as long as they choose the closest matching dental model. In an open-set design in which none of models may be correct, the opportunity for false positives is higher. The open-set design resembles the application in casework. See the extensive discussion of closed-set designs in firearms analysis (Section 5.5).
Conclusion

Few empirical studies have been undertaken to study the ability of examiners to accurately identify the source of a bitemark. Among those studies that have been undertaken, the observed false positive rates were so high that the method is clearly scientifically unreliable at present. (Moreover, several of these studies employ inappropriate closed-set designs that are likely to underestimate the false-positive rate.)

<table>
<thead>
<tr>
<th>Finding 4: Bitemark analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundational validity. PCAST finds that bitemark analysis does not meet the scientific standards for foundational validity, and is far from meeting such standards. To the contrary, available scientific evidence strongly suggests that examiners cannot consistently agree on whether an injury is a human bitemark and cannot identify the source of bitemark with reasonable accuracy.</td>
</tr>
</tbody>
</table>

The Path Forward

Some practitioners have expressed concern that the exclusion of bitemarks in court could hamper efforts to convict defendants in some cases.\(^{243}\) If so, the correct solution, from a scientific perspective, would not be to admit expert testimony based on invalid and unreliable methods, but rather to attempt to develop scientifically valid methods.

However, PCAST considers the prospects of developing bitemark analysis into a scientifically valid method to be low. We advise against devoting significant resources to such efforts.

5.4 Latent Fingerprint Analysis

Latent fingerprint analysis was first proposed for use in criminal identification in the 1800s and has been used for more than a century. The method was long hailed as infallible, despite the lack of appropriate studies to assess its error rate. As discussed above, this dearth of empirical testing indicated a serious weakness in the scientific culture of forensic science—where validity was assumed rather than proven. Citing earlier guidelines now acknowledged to have been inappropriate,\(^{244}\) the DOJ recently noted,

> Historically, it was common practice for an examiner to testify that when the ... methodology was correctly applied, it would always produce the correct conclusion. Thus any error that occurred would be human error and the resulting error rate of the methodology would be zero. This view was described by the Department of Justice in 1984 in the publication The Science of Fingerprints, where it states, "Of all the methods of identification, fingerprinting alone has proved to be both infallible and feasible." \(^{245}\)

In response to the 2009 NRC report, the latent print analysis field has made progress in recognizing the need to perform empirical studies to assess foundational validity and measure reliability. Much credit goes to the FBI

\(^{243}\) The precise proportion of cases in which bitemarks play a key role is unclear, but is clearly small.

\(^{245}\) See: www.justice.gov/olp/file/861906/download
Laboratory, which has led the way in performing both black-box studies, designed to measure reliability, and “white-box studies,” designed to understand the factors that affect examiners’ decisions. PCAST applauds the FBI’s efforts. There are also nascent efforts to begin to move the field from a purely subjective method toward an objective method—although there is still a considerable way to go to achieve this important goal.

Methodology

Latent fingerprint analysis typically involves comparing (1) a “latent print” (a complete or partial friction-ridge impression from an unknown subject) that has been developed or observed on an item) with (2) one or more “known prints” (fingerprints deliberately collected under a controlled setting from known subjects; also referred to as “ten prints”), to assess whether the two may have originated from the same source. (It may also involve comparing latent prints with one another.)

It is important to distinguish latent prints from known prints. A known print contains fingerprint images of up to ten fingers captured in a controlled setting, such as an arrest or a background check. Because known prints tend to be of high quality, they can be searched automatically and reliably against large databases. By contrast, latent prints in criminal cases are often incomplete and of variable quality (smudged or otherwise distorted), with quality and clarity depending on such factors as the surface touched and the mechanics of touch.

An examiner might be called upon to (1) compare a latent print to the fingerprints of a known suspect that has been identified by other means (“identified suspect”) or (2) search a large database of fingerprints to identify a suspect (“database search”).

Examiners typically follow an approach called “ACE” or “ACE-V,” for Analysis, Comparison, Evaluation, and Verification. The approach calls on examiners to make a series of subjective assessments. An examiner uses subjective judgment to select particular regions of a latent print for analysis. If there are no identified persons of interest, the examiner will run the latent print against an Automated Fingerprint Identification System (AFIS), containing large numbers of known prints, which uses non-public, proprietary image-recognition algorithms to generate a list of potential candidates that share similar fingerprint features. The examiner then manually compares the latent print to the fingerprints from the specific person of interest or from the closest candidate matches generated by the computer by studying selected features and then comes to a subjective decision as to whether they are similar enough to declare a proposed identification.

ACE-V adds a verification step. For the verification step, implementation varies widely. In many laboratories, only identifications are verified, because it is considered too burdensome, in terms of time and cost, to conduct analysis on the AFIS data. If a match is found, the examiner may conduct a re-examination of the latent print by using new tools or techniques to eliminate the possibility of contamination. If the examiner is still not satisfied with the match, a third examiner may be consulted to provide an opinion on the likelihood of the identification.

The algorithms used in generating candidate matches are proprietary and have not been made publicly available. The FBI Laboratory requires examiners to complete and document their analysis of the latent fingerprint before reviewing any known fingerprints or moving to the comparison and evaluation phase, this this requirement is not shared by all labs.

Fingerprint features are compared at three levels of detail—level 1 ("ridge flow"), level 2 ("ridge path"), and level 3 ("ridge features" or "shapes"). "Ridge flow" refers to classes of pattern types shared by many individuals, such as loop or whorl formations; this level is only sufficient for exclusions, not for declaring identifications. "Ridge path" refers to minutiae that can be used for declaring identifications, such as bifurcations or dots. "Ridge shapes" include the edges of ridges and location of pores. See: National Institute of Standards and Technology. “Latent Print Examination and Human Factors: Improving the Practice through a Systems Approach.” (2012), available at: www.nist.gov/oles/upload/latent.pdf.

249 State and local jurisdictions began purchasing AFIS systems in the 1970s and 1980s from private vendors, each with their own proprietary software and searching algorithms. In 1999, the FBI launched the Integrated Automated Fingerprint Identification System (IAFIS), a national fingerprint database that houses fingerprints and criminal histories on more than 70 million subjects submitted by state, local and federal law enforcement agencies (recently replaced by the Next Generation Identification (NGI) System). Some criminal justice agencies have the ability to search latent prints not only against their own fingerprint database but also against a hierarchy of local, state, and federal databases. System-wide interoperability, however, has yet to be achieved. See: Committee on Science, Subcommittee on Forensic Science of the National Science and Technology Council. “Achieving Interoperability for Latent Fingerprint Identification in the United States.” (2014). www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/afis_10-20-2014_draftforcomment.pdf.
250 The algorithms used in generating candidate matches are proprietary and have not been made publicly available.
251 The FBI Laboratory requires examiners to complete and document their analysis of the latent fingerprint before reviewing any known fingerprints or moving to the comparison and evaluation phase, this this requirement is not shared by all labs.
252 Fingerprint features are compared at three levels of detail—level 1 ("ridge flow"), level 2 ("ridge path"), and level 3 ("ridge features" or "shapes"). “Ridge flow” refers to classes of pattern types shared by many individuals, such as loop or whorl formations; this level is only sufficient for exclusions, not for declaring identifications. “Ridge path” refers to minutiae that can be used for declaring identifications, such as bifurcations or dots. “Ridge shapes” include the edges of ridges and location of pores. See: National Institute of Standards and Technology. “Latent Print Examination and Human Factors: Improving the Practice through a Systems Approach.” (2012), available at: www.nist.gov/oles/upload/latent.pdf.
independent examinations in all cases (for example, exclusions). This procedure is problematic because it is not blind: the second examiner knows the first examiner reached a conclusion of proposed identification, which creates the potential for confirmation bias. In the aftermath of the Madrid train bombing case misidentification (see below), the FBI Laboratory adopted requirements to conduct, in certain cases, “independent application of ACE to a friction ridge print by another qualified examiner, who does not know the conclusion of the primary examiner.”²⁵⁵ In particular, the FBI Laboratory uses blind verification in cases considered to present the greatest risk of error, such as where a single fingerprint is identified, excluded, or deemed inconclusive.²⁵⁶

As noted in Chapter 2, earlier concerns²⁵⁷ about the reliability of latent fingerprint analysis increased substantially following a prominent misidentification of a latent fingerprint recovered from the 2004 bombing of the Madrid commuter train system. An FBI examiner concluded with “100 percent certainty” that the fingerprint matched Brandon Mayfield, an American in Portland, Oregon, even though Spanish authorities were unable to confirm the identification. Reviewers believe the misidentification resulted in part from “confirmation bias” and “reverse reasoning”—that is, going from the known print to the latent image in a way that led to overreliance on apparent similarities and inadequate attention to differences.²⁵⁸ As described in a recent paper by scientists at the FBI Laboratory,

> A notable example of the problem of bias from the exemplar resulting in circular reasoning occurred in the Madrid misidentification, in which the initial examiner reinterpreted five of the original seven analysis points to be more consistent with the (incorrect) exemplar: “Having found as many as 10 points of unusual similarity, the FBI examiners began to ‘find’ additional features in LFP 17 [the latent print] that were not really there, but rather suggested to the examiners by features in the Mayfield prints.”²⁵⁹

In contrast to DNA analysis, the rules for declaring an identification that were historically used in fingerprint analysis were not set in advance nor uniform among examiners. As described by a February 2012 report from an Expert Working Group commissioned by NIST and NIJ:

The thresholds for these decisions can vary among examiners and among forensic service providers. Some examiners state that they report identification if they find a particular number of relatively rare concurring features, for instance, eight or twelve. Others do not use any fixed numerical standard. Some examiners discount seemingly different details as long as there are enough similarities between the two prints. Other examiners practice the one-dissimilarity rule, excluding a print if a single dissimilarity not attributable to perceptible distortion exists. If the examiner decides that the degree of similarity falls short of satisfying the standard, the examiner can report an inconclusive outcome. If the conclusion is that the degree of similarity satisfies the standard, the examiner reports an identification.

In September 2011, the Scientific Working Group on Friction Ridge Analysis, Study and Technology (SWGFAST) issued “Standards for Examining Friction Ridge Impressions and Resulting Conclusions (Latent/Tenprint)” that begins to move latent print analysis in the direction of an objective framework. In particular, it suggests criteria concerning what combination of image quality and feature quantity (for example, the number of “minutiae” shared between two fingerprints) would be sufficient to declare an identification. The criteria are not yet fully objective, but they are a step in the right direction. The Friction Ridge Subcommittee of the OSAC has recognized the need for objective criteria in its identification of “Research Needs.” We note that the black-box studies described below did not set out to test these specific criteria, and so they have not yet been scientifically validated.

Studies of Scientific Validity and Reliability

As discussed above, the foundational validity of a subjective method can only be established through multiple independent black-box studies appropriately designed to assess validity and reliability.

Below, we discuss various studies of latent fingerprint analysis. The first five studies were not intended as validation studies, although they provide some incidental information about performance. Remarkably, there have been only two black-box studies that were intentionally and appropriately designed to assess validity and reliability—the first published by the FBI Laboratory in 2011; the second completed in 2014 but not yet published. Conclusions about foundational validity thus must rest on these two recent studies.

In summarizing these studies, we apply the guidelines described earlier in this report (see Chapter 4 and Appendix A). First, while we note (1) both the estimated false positive rates and (2) the upper 95 percent confidence bound on the false positive rate, we focus on the latter as, from a scientific perspective, the appropriate rate to report to a jury—because the primary concern should be about underestimating the false positive rate and the true rate could reasonably be as high as this value.

Second, while we note both the false positive rate among conclusive examinations (identifications or exclusions) or among all examinations (including inconclusives) are relevant, we focus primarily on the former as being, from a scientific perspective, the

261 See: workspace.forensicosac.org/kws/groups/fric_ridge/documents.
262 By convention, the 95 percent confidence bound is most widely used in statistics as reflecting the range of plausible values (see Appendix A).
appropriate rate to report to a jury—because fingerprint evidence used against a defendant in court will typically be the result of a conclusive examination.

Evett and Williams (1996)
This paper is a discursive historical review essay that contains a brief description of a small “collaborative study” relevant to the accuracy of fingerprint analysis. In this study, 130 highly experienced examiners in England and Wales, each with at least ten years of experience in forensic fingerprint analysis, were presented with ten latent print-known pairs. Nine of the pairs came from past casework at New Scotland Yard and were presumed to be ‘mated pairs’ (that is, from the same source). The tenth pair was a ‘non-mated pair’ (from different sources), involving a latent print deliberately produced on a “dimpled beer mug.” For the single non-mated pair, the 130 experts made no false identifications. Because the paper does not distinguish between exclusions and inconclusive examinations (and the authors no longer have the data), it is impossible to infer the upper 95 percent confidence bound.

Langenburg (2009a)
In a small pilot study, the author examined the performance of six examiners on 60 tests each. There were only 15 conclusive examinations involving non-mated pairs (see Table 1 of the paper). There was one false positive, which the author excluded because it appeared to be a clerical error and was not repeated on subsequent retest. Even if this error is excluded, the tiny sample size results in a huge confidence interval (upper 95 percent confidence bound of 19 percent), with this upper bound corresponding to 1 error in 5 cases.

Langenburg (2009b)
In this small pilot study for the following paper, the author tested examiners in a conference room at a convention of forensic identification specialists. The examiners were divided into three groups: high-bias (n=16), low-bias (n=12), and control (n=15). Each group was presented with 6 latent-known pairs, consisting of 3 mated and 3 non-mated pairs. The first two groups received information designed to bias their judgment by heightening their attention, while the control group received a generic description. For the non-mated pairs, the control group had 1 false positive among 43 conclusive examinations. The false positive rate was 2.3

264 I.W. Evett, personal communication.
265 For example, the upper 95 percent confidence bound would be 1 in 44 if all 130 examinations were conclusive and 1 in 22 if half of the examinations were conclusive.
percent (upper 95 percent confidence bound of 11 percent), with the upper bound corresponding to 1 error in 9 cases. ²⁶⁸,²⁶⁹

Langenburg, Champod, and Genessay (2012)
This study was not designed to assess the accuracy of latent fingerprint analysis, but rather to explore how fingerprint analysts would incorporate information from newly developed tools (such as a quality tool to aid in the assessment of the clarity of the friction ridge details; a statistical tool to provide likelihood ratios representing the strength of the corresponding features between compared fingerprints; and consensus information from a group of trained fingerprint experts) into their decision making processes. ²⁷⁰ Nonetheless, the study provided some information on the accuracy of latent print analysis. Briefly, 158 experts (as well as some trainees) were asked to analyze 12 latent print-exemplar pairs, consisting of 7 mated and 5 non-mated pairs. For the non-mated pairs, there were 17 false positive matches among 711 conclusive examinations by the experts. ²⁷¹ The false positive rate was 2.4 percent (upper 95 percent confidence bound of 3.5 percent). The estimated error rate corresponds to 1 error in 42 cases, with an upper bound corresponding to 1 error in 28 cases. ²⁷²

Tangen et al. (2011)
This Australian study was designed to study the reliability of latent fingerprint analysis by fingerprint experts. ²⁷³ The authors asked 37 fingerprint experts, as well as 37 novices, to examine 36 latent print-known pairs—consisting of 12 mated pairs, 12 non-mated pairs chosen to be “similar” (the most highly ranked exemplar from a different source in the Australian National Automated Fingerprint Identification System), and 12 “non-similar” non-mated pairs (chosen at random from the other prints). Examiners were asked to rate the likelihood they came from the same source on a scale from 1 to 12. The authors chose to define scores of 1-6 as identifications and scores of 7-12 as exclusions. ²⁷⁴ This approach does not correspond to the procedures used in conventional fingerprint examination.

For the “similar” non-mated pairs, the experts made 3 errors among 444 comparisons; the false positive rate was 0.68 percent (upper 95 percent confidence bound of 1.7 percent), with the upper bound corresponding to 1 error in 58 cases. For the “non-similar” non-mated pairs, the examiners made no errors in 444 comparisons; the

²⁶⁸ If the two inconclusive examinations are included, the values are only slightly different: 2.2 percent (upper 95 percent confidence bound of 10.1 percent), with the odds being 1 in 10.
²⁶⁹ The biased groups made no errors among 69 conclusive examinations.
²⁷¹ We thank G. Langenburg for providing the data for the experts alone.
²⁷² If the 79 inconclusive examinations are included, the false positive rate was 2.15 percent (upper 95 percent confidence bound of 3.2 percent). The estimated false positive rate corresponds to 1 error in 47 cases, with the upper bound corresponding to 1 in 31.
²⁷⁴ There were thus no inconclusive results in this study.
false positive rate was thus 0 percent (upper 95 percent confidence bound of 0.62 percent), with the upper bound corresponding to 1 error in 148 cases. The experts substantially outperformed the novices.

Although interesting, the study does not constitute a black-box validation study of latent fingerprint analysis because its design did not resemble the procedures used in forensic practice (in particular, the process of assigning rating on a 12-point scale that the authors subsequently converted into identifications and exclusions).

FBI studies
The first study designed to test foundational validity and measure reliability of latent fingerprint analysis was a major black-box study conducted by FBI scientists and collaborators. Undertaken in response to the 2009 NRC report, the study was published in 2011 in a leading international science journal, *Proceedings of the National Academy of Sciences*. The authors assembled a collection of 744 latent-known pairs, consisting of 520 mated pairs and 224 non-mated pairs. To attempt to ensure that the non-mated pairs were representative of the type of matches that might arise when police identify a suspect by searching fingerprint databases, the known prints were selected by searching the latent prints against the 58 million fingerprints in the AFIS database and selecting one of the closest matching hits. Each of 169 fingerprint examiners was shown 100 pairs and asked to classify them as an identification, an exclusion, or inconclusive. The study reported 6 false positive identifications among 3628 nonmated pairs that examiners judged to have “value for identification.” The false positive rate was thus 0.17 percent (upper 95 percent confidence bound of 0.33 percent). The estimated false positive rate corresponds to 1 error in 604 cases, with the upper bound indicating that the rate could be as high as 1 error in 306 cases.

In 2012, the same authors reported a follow-up study testing repeatability and reproducibility. After a period of about seven months, 75 of the examiners from the previous study re-examined a subset of the latent-known comparisons from the previous study. Among 476 nonmated pairs leading to conclusive examinations (including 4 of the pairs that led to false positives in the initial study and were reassigned to the examiner who had made the erroneous decision), there were no false positives. These results (upper 95 percent confidence bound of 0.63 percent, corresponding to 1 error in 160) are broadly consistent with the false positive rate measured in the previous study.

Miami-Dade study (Pacheco et al. (2014))
The Miami-Dade Police Department Forensic Services Bureau, with funding from the NIJ, conducted a black-box study designed to assess foundational validity and measure reliability; the results were reported to the sponsor

276 If one includes the 455 inconclusive results for latent prints judged to have “value for identification,” the false positive rate is 0.15 percent (upper 95 percent confidence bound of 0 of 0.29 percent). The estimated false positive rate corresponds to 1 error in 681 cases, with the upper bound corresponding to 1 in 344.

277 The sensitivity (proportion of mated samples that were correctly declared to match) was 92.5 percent.

278 Overall, 85-90 percent of the conclusive results were unchanged, with roughly 30 percent of false exclusions being repeated.
and posted on the internet, but they have not yet published in a peer-reviewed scientific journal. The study differed significantly from the 2011 FBI black-box study in important respects, including that the known prints were not selected by means of a large database search to be similar to the latent prints (which should, in principle, have made it easier to declare exclusions for the non-mated pairs). The study found 42 false positives among 995 conclusive examinations. The false positive rate was 4.2 percent (upper 95 percent confidence bound of 5.4 percent). The estimated rate corresponds to 1 error in 24 cases, with the upper bound indicating that the rate could be as high as 1 error in 18 cases. (Note: The paper observes that “in 35 of the erroneous identifications the participants appeared to have made a clerical error, but the authors could not determine this with certainty.” In validation studies, it is inappropriate to exclude errors in a post hoc manner (see Box 4). However, if these 35 errors were to be excluded, the false positive rate would be 0.7 percent (confidence interval 1.4 percent), with the upper bound corresponding to 1 error in 73 cases.)

Conclusions from the studies

While it is distressing that meaningful studies to assess foundational validity and reliability did not begin until recently, we are encouraged that serious efforts are now being made to try to put the field on a solid scientific foundation—including by measuring accuracy, defining quality of latent prints, studying the reason for errors, and so on. Much credit belongs to the FBI Laboratory, as well as to academic researchers who had been pressing the need for research. Importantly, the FBI Laboratory is responsible for the only black-box study to date that has been published in a peer-reviewed journal.

The studies above cannot be directly compared for many reasons—including differences in experimental design, selection and difficulty level of latent-known pairs, and degree to which they represent the circumstances, procedures and pressures found in casework. Nonetheless, certain conclusions can be drawn from the results of the studies (summarized in Table 1 below):

(1) The studies collectively demonstrate that many examiners can, under some circumstances, produce correct answers at some level of accuracy.

(2) The empirically estimated false positive rates are much higher than the general public (and, by extension, most jurors) would likely believe based on longstanding claims about the accuracy of fingerprint analysis.

280 If the 403 inconclusive examinations are included, the false positive rate was 3.0 percent (upper 95 percent confidence bound of 3.9 percent). The estimated false positive rate corresponds to 1 error in 33 cases, with the upper bound corresponding to 1 in 26.

281 The conclusion holds regardless of whether the rates are based on the point estimates or the 95 percent confidence bound, and on conclusive examinations or all examinations.

282 These claims include the DOJ’s own longstanding previous assertion that fingerprint analysis is “infallible” (www.justice.gov/olp/file/861906/download); testimony by a former head of the FBI’s fingerprint unit testified that the FBI had “an error rate of one per every 11 million cases” (see p. 53); and a study finding that mock jurors estimated that the false positive rate for latent fingerprint analysis is 1 in 5.5 million (see p. 45). Koehler, J.J. “Intuitive error rate estimates for the forensic sciences.” (August 2, 2016). Available at: papers.ssrn.com/sol3/papers.cfm?abstract_id=2817443.
Of the two appropriately designed black-box studies, the larger study (FBI 2011 study) yielded a false positive rate that is unlikely to exceed 1 in 306 conclusive examinations while the other (Miami-Dade 2014 study) yielded a considerably higher false positive rate of 1 in 18.283 (The earlier studies, which were not designed as validation studies, also yielded high false positive rates.)

Overall, it would be appropriate to inform jurors that (1) only two properly designed studies of the accuracy of latent fingerprint analysis have been conducted and (2) these studies found false positive rates that could be as high as 1 in 306 in one study and 1 in 18 in the other study. This would appropriately inform jurors that errors occur at detectable frequencies, allowing them to weigh the probative value of the evidence.

It is likely that a properly designed program of systematic, blind verification would decrease the false-positive rate, because examiners in the studies tend to make different mistakes.284 However, there has not been empirical testing to obtain a quantitative estimate of the false positive rate that might be achieved through such a program.285 And, it would not be appropriate simply to infer the impact of independent verification based on the theoretical assumption that examiners’ errors are uncorrelated.286

It is important to note that, for a verification program to be truly blind and thereby avoid cognitive bias, examiners cannot only verify individualizations. As the authors of the FBI black-box study propose, “this can be ensured by performing verifications on a mix of conclusion types, not merely individualizations”—that is, a mix that ensures that verifiers cannot make inferences about the conclusions being verified.287 We are not aware of any blind verification programs that currently follow this practice.

At present, testimony asserting any specific level of increased accuracy (beyond that measured in the studies) due to blind independent verification would be scientifically inappropriate, as speculation unsupported by empirical evidence.

283 As noted above, the rate is 1 in 73 if one ignores the presumed clerical errors—although such post hoc adjustment is not appropriate in validation studies.
284 The authors of the FBI black-box study note that five of the false positive occurred on test problem where a large majority of examiners correctly declared an exclusion, while one occurred on a test problem where the majority of examiners made inconclusive decisions. They state that “this suggests that these erroneous individualizations would have been detected if blind verification were routinely performed.” Ulery, B.T., Hicklin, R.A., Buscaglia, J., and M.A. Roberts. “Accuracy and reliability of forensic latent fingerprint decisions.” Proceedings of the National Academy of Sciences, Vol. 108, No. 19 (2011): 7733-8.
285 The Miami-Dade study involved a small test of verification step, involving verification of 15 of the 42 false positives. In these 15 cases, the second examiner declared 13 cases to be exclusions and 2 to be inconclusive. The sample size is too small to draw a meaningful conclusion. And, the paper does not report verification results for the other 27 false positives.
286 The DOJ has proposed to PCAST that “basic probability states that given an error rate for one examiner, the likelihood of a second examiner making the exact same error (verification/blind verification), would dictate that the rates should be multiplied.” However, such a theoretical model would assume that errors by different examiners will be uncorrelated; yet they may depend on the difficulty of the problem and thus be correlated. Empirical studies are necessary to estimate error rates under blind verification.
We note that the DOJ believes that the high false positive rate observed in the Miami-Dade study (1 in 24, with upper confidence limit of 1 in 18) is unlikely to apply to casework at the FBI Laboratory, because it believes such a high rate would have been detected by the Laboratory’s verification procedures. An independent evaluation of the verification protocols could shed light on the extent to which such inferences could be drawn based on the current Laboratory’s verification procedures.

We also note it is conceivable that the false-positive rate in real casework could be higher than that observed in the experimental studies, due to exposure to potentially biasing information in the course of casework. Introducing test samples blindly into the flow of casework could provide valuable insight about the actual error rates in casework.

In conclusion, the FBI Laboratory black-box study has significantly advanced the field. There is a need for ongoing studies of the reliability of latent print analysis, building on its study design. Studies should ideally estimate error rates for latent prints of varying “quality” levels, using well defined measures (ideally, objective measures implemented by automated software288). As noted above, studies should be designed and conducted in conjunction with third parties with no stake in the outcome. This important feature was not present in the FBI study.

288 An example is the Latent Quality Assessment (LQAS), which is designed as a proof-of-concept tool to evaluate the clarity of prints. Studies have found that error rates are correlated to the quality of the print. The software provides a manual and automated definitions of clarity maps, functions to process clarity maps, and annotation of corresponding points providing a method for overlapping of impression areas. Hicklin, R.A., Buscaglia, J., and M.A. Roberts. “Assessing the clarity of friction ridge impressions.” \textit{Forensic Science International}, Vol. 226, No. 1 (2013): 106-17. Another example is the Picture Annotation System (PiAnoS), developed by the University of Lausanne, which is being tested as a quality metric and statistical assessment tool for analysts. This platform uses tools that (1) assess the clarity of the friction ridge details, (2) provide likelihood ratios representing the strength of corresponding features between fingerprints, and (3) gives consensus information from a group of trained fingerprint experts. PiAnoS is an open-source software package available at: ips-labs.unil.ch/pianos.
Table 1: Error Rates in Studies of Latent Print Analysis*

<table>
<thead>
<tr>
<th>Study</th>
<th>Raw Data</th>
<th>Freq. (Confidence bound)</th>
<th>Estimated Rate</th>
<th>Bound on Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langenburg (2009a)</td>
<td>0/14</td>
<td>0% (19%)</td>
<td>1 in ∞</td>
<td>1 in 5</td>
</tr>
<tr>
<td>Langenburg (2009b)</td>
<td>1/43</td>
<td>2.3% (11%)</td>
<td>1 in 43</td>
<td>1 in 9</td>
</tr>
<tr>
<td>Langenburg et al. (2012)</td>
<td>17/711</td>
<td>2.4% (3.5%)</td>
<td>1 in 42</td>
<td>1 in 28</td>
</tr>
<tr>
<td>Tangen et al. (2011) ("similar pairs")</td>
<td>3/444</td>
<td>0.68% (1.7%)</td>
<td>1 in 148</td>
<td>1 in 58</td>
</tr>
<tr>
<td>Tangen et al. (2011) ("dissimilar pairs")</td>
<td>0/444</td>
<td>0% (0.67%)</td>
<td>1 in ∞</td>
<td>1 in 148</td>
</tr>
<tr>
<td>Black-box studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uivery et al. 2011 (FBI)**</td>
<td>6/3628</td>
<td>0.17% (0.33%)</td>
<td>1 in 604</td>
<td>1 in 306</td>
</tr>
<tr>
<td>Pacheco et al. 2014 (Miami-Dade)</td>
<td>42/995</td>
<td>4.2% (5.4%)</td>
<td>1 in 24</td>
<td>1 in 18</td>
</tr>
<tr>
<td>Pacheco et al. 2014 (Miami-Dade) (excluding clerical errors)</td>
<td>7/960</td>
<td>0.7% (1.4%)</td>
<td>1 in 137</td>
<td>1 in 73</td>
</tr>
</tbody>
</table>

* “Raw Data”: Number of false positives divided by number of conclusive examinations involving non-mated pairs. “Freq. (Confidence Bound)”: Point estimate of false positive frequency, and upper 95 percent confidence bound. “Estimated Rate”: The odds of a false positive occurring, based on the observed proportion of false positives. “Bound on Rate”: The odds of a false positive occurring, based on the upper 95 percent confidence bound—that is, the rate could reasonably be as high as this value.

** If inconclusive examinations are included for the FBI study, the rates are 1 in 681 and 1 in 344, respectively.

Scientific Studies of How Latent-print Examiners Reach Conclusions

Complementing the black-box studies, various studies have shed important light on how latent fingerprint examiners reach conclusions and how these conclusions may be influenced by extraneous factors. These studies underscore the serious risks that may arise in subjective methods.

Cognitive-bias studies

Itiel Dror and colleagues have done pioneering work on the potential role of cognitive bias in latent fingerprint analysis.289 In an exploratory study in 2006, they demonstrated that examiners’ judgments can be influenced by knowledge about other forensic examiners’ decisions (a form of “confirmation bias”).290 Five fingerprint examiners were given fingerprint pairs that they had studied five years earlier in real cases and had judged to “match.” They were asked to re-examine the prints, but were led to believe that they were the pair of prints that had been erroneously matched by the FBI in a high-profile case. Although they were instructed to ignore this information, four out of five examiners no longer judged the prints to “match.” Although these studies are

too small to provide precise estimates of the impact of cognitive bias, they have been instrumental in calling attention to the issue.

Several strategies have been proposed for mitigating cognitive bias in forensic laboratories, including managing the flow of information in a crime laboratory to minimize exposure of the forensic analyst to irrelevant contextual information (such as confessions or eyewitness identification) and ensuring that examiners work in a linear fashion, documenting their finding about evidence from crime science *before* performing comparisons with samples from a suspect.291,292

FBI white-box studies

In the past few years, FBI scientists and their collaborators have also undertaken a series of “white-box” studies to understand the factors underlying the process of latent fingerprint analysis. These studies include analyses of fingerprint quality,293,294 examiners’ processes to determine the value of a latent print for identification or exclusion,295 the sufficiency of information for identifications,296 and how examiners’ assessments of a latent print change when they compare it with a possible match.297

Among work on subjective feature-comparison methods, this series of papers is unique in its breadth, rigor and willingness to explore challenging issues. We could find no similarly self-reflective analyses for other subjective disciplines.

The two most recent papers are particularly notable because they involve the serious issue of confirmation bias. In a 2014 paper, the FBI scientists wrote

*ACE distinguishes between the Comparison phase (assessment of features) and Evaluation phase (determination), implying that determinations are based on the assessment of features. However, our results suggest that this is not a simple causal relation: examiners’ markups are also influenced by their determinations. How this reverse influence occurs is not obvious. Examiners may subconsciously reach a

292 Irrelevant contextual information could, depending on its nature, bias an examiner toward an incorrect identification or an incorrect exclusion. Either outcome is undesirable.

preliminary determination quickly and this influences their behavior during Comparison (e.g., level of effort expended, how to treat ambiguous features). After making a decision, examiners may then revise their annotations to help document that decision, and examiners may be more motivated to provide thorough and careful markup in support of individualizations than other determinations. As evidence in support of our conjecture, we note in particular the distributions of minutia counts, which show a step increase associated with decision thresholds: this step occurred at about seven minutiae for most examiners, but at 12 for those examiners following a 12-point standard.298

Similar observations had been made by Dror et al., who noted that the number of minutiae marked in a latent print was greater when a matching exemplar was present.299 In addition, Evett and Williams described how British examiners, who used a 16-point standard for declaring identifications, used an exemplar to “tease the points out” of the latent print after they had reached an “inner conviction” that the prints matched.300

In a follow-up paper in 2015, the FBI scientists carefully studied how examiners analyzed prints and confirmed that, in the vast majority (>90 percent) of identification decisions, examiners modified the features marked in the latent fingerprint in response to an apparently matching known fingerprint (more often adding than subtracting features).301 (The sole false positive in their study was an extreme case in which the conclusion was based almost entirely on subsequent marking of minutiae that had not been initially found and deletion of features that had been initially marked.)

The authors concluded that “there is a need for examiners to have some means of unambiguously documenting what they see during analysis and comparison (in the ACE-V process)” and that “rigorously defined and consistently applied methods of performing and documenting ACE-V would improve the transparency of the latent print examination process.”

PCAST compliments the FBI scientists for calling attention to the risk of confirmation bias arising from circular reasoning. As a matter of scientific validity, examiners must be required to “complete and document their analysis of a latent fingerprint before looking at any known fingerprint” and “must separately document any data relied upon during comparison or evaluation that differs from the information relied upon during analysis.”302 The FBI adopted these rules following the Madrid train bombing case misidentification; they need to be universally adopted by all laboratories.

Validity as Applied

Foundational validity means that a large group of examiners analyzing a specific type of sample can, under test conditions, produce correct answers at a known and useful frequency. It does not mean that a particular examiner has the ability to reliably apply the method; that the samples in the foundational studies are representative of the actual evidence of the case; or that the circumstances of the foundational study represent a reasonable approximation of the circumstances of casework.

To address these matters, courts should take into account several key considerations.

(1) Because latent print analysis, as currently practiced, depends on subjective judgment, it is scientifically unjustified to conclude that a particular examiner is capable of reliably applying the method unless the examiner has undergone regular and rigorous proficiency testing. Unfortunately, it is not possible to assess the appropriateness of current proficiency testing because the test problems are not publically released. (As emphasized previously, training and experience are no substitute, because neither provides any assurance that the examiner can apply the method reliably.)

(2) In any given case, it must be established that the latent print(s) are of the quality and completeness represented in the foundational validity studies.

(3) Because contextual bias may have an impact on experts’ decisions, courts should assess the measures taken to mitigate bias during casework—for example, ensuring that examiners are not exposed to potentially biasing information and ensuring that analysts document ridge features of an unknown print before referring to the known print (a procedure known as “linear ACE-V”303).

Finding 5: Latent fingerprint analysis

Foundational validity. Based largely on two recent appropriately designed black-box studies, PCAST finds that latent fingerprint analysis is a foundationally valid subjective methodology—albeit with a false positive rate that is substantial and is likely to be higher than expected by many jurors based on longstanding claims about the infallibility of fingerprint analysis.

Conclusions of a proposed identification may be scientifically valid, provided that they are accompanied by accurate information about limitations on the reliability of the conclusion—specifically, that (1) only two properly designed studies of the foundational validity and accuracy of latent fingerprint analysis have been conducted, (2) these studies found false positive rates that could be as high as 1 error in 306 cases in one study and 1 error in 18 cases in the other, and (3) because the examiners were aware they were being tested, the actual false positive rate in casework may be higher. At present, claims of higher accuracy are

not warranted or scientifically justified. Additional black-box studies are needed to clarify the reliability of the method.

Validity as applied. Although we conclude that the method is foundationally valid, there are a number of important issues related to its validity as applied.

(1) Confirmation bias. Work by FBI scientists has shown that examiners typically alter the features that they initially mark in a latent print based on comparison with an apparently matching exemplar. Such circular reasoning introduces a serious risk of confirmation bias. Examiners should be required to complete and document their analysis of a latent fingerprint before looking at any known fingerprint and should separately document any additional data used during their comparison and evaluation.

(2) Contextual bias. Work by academic scholars has shown that examiners’ judgments can be influenced by irrelevant information about the facts of a case. Efforts should be made to ensure that examiners are not exposed to potentially biasing information.

(3) Proficiency testing. Proficiency testing is essential for assessing an examiner’s capability and performance in making accurate judgments. As discussed elsewhere in this report, proficiency testing needs to be improved by making it more rigorous, by incorporating it within the flow of casework, and by disclosing tests for evaluation by the scientific community.

From a scientific standpoint, validity as applied requires that an expert: (1) has undergone appropriate proficiency testing to ensure that he or she is capable of analyzing the full range of latent fingerprints encountered in casework and reports the results of the proficiency testing; (2) discloses whether he or she documented the features in the latent print in writing before comparing it to the known print; (3) provides a written analysis explaining the selection and comparison of the features; (4) discloses whether, when performing the examination, he or she was aware of any other facts of the case that might influence the conclusion; and (5) verifies that the latent print in the case at hand is similar in quality to the range of latent prints considered in the foundational studies.

The Path Forward

Continuing efforts are needed to improve the state of latent print analysis—and these efforts will pay clear dividends for the criminal justice system.

One direction is to continue to improve latent print analysis as a subjective method. With only two black-box studies so far (with very different error rates), there is a need for additional black-box studies building on the study design of the FBI black-box study. Studies should estimate error rates for latent prints of varying quality and completeness, using well-defined measures. As noted above, the studies should be designed and conducted in conjunction with third parties with no stake in the outcome.
A second—and more important—direction is to convert latent print analysis from a subjective method to an objective method. The past decade has seen extraordinary advances in automated image analysis based on machine learning and other approaches—leading to dramatic improvements in such tasks as face recognition. In medicine, for example, it is expected that automated image analysis will become the gold standard for many applications involving interpretation of X-rays, MRIs, fundoscopy, and dermatological images.

Objective methods based on automated image analysis could yield major benefits—including greater efficiency and lower error rates; it could also enable estimation of error rates from millions of pairwise comparisons. Initial efforts to develop automated systems could not outperform humans. However, given the pace of progress in image analysis and machine learning, we believe that fully automated latent print analysis is likely to be possible in the near future. There have already been initial steps in this direction, both in academia and industry.

The most important resource to propel the development of objective methods would be the creation of huge databases containing known prints, each with many corresponding “simulated” latent prints of varying qualities and completeness, which would be made available to scientifically-trained researchers in academia and industry. The simulated latent prints could be created by “morphing” the known prints, based on transformations derived from collections of actual latent print-record print pairs.

309 For privacy, fingerprints from deceased individuals could be used.
5.5 Firearms Analysis

Methodology

In firearms analysis, examiners attempt to determine whether ammunition is or is not associated with a specific firearm based on toolmarks produced by guns on the ammunition.\(^{310,311}\) (Briefly, gun barrels are typically rifled to improve accuracy, meaning that spiral grooves are cut into the barrel’s interior to impart spin on the bullet. Random individual imperfections produced during the tool-cutting process and through “wear and tear” of the firearm leave toolmarks on bullets or casings as they exit the firearm. Parts of the firearm that come into contact with the cartridge case are machined by other methods.)

The discipline is based on the idea that the toolmarks produced by different firearms vary substantially enough (owing to variations in manufacture and use) to allow components of fired cartridges to be identified with particular firearms. For example, examiners may compare “questioned” cartridge cases from a gun recovered from a crime scene to test fires from a suspect gun.

Briefly, examination begins with an evaluation of class characteristics of the bullets and casings, which are features that are permanent and predetermined before manufacture. If these class characteristics are different, an elimination conclusion is rendered. If the class characteristics are similar, the examination proceeds to identify and compare individual characteristics, such as the striae that arise during firing from a particular gun. According to the Association of Firearm and Tool Mark Examiners (AFTE) the “most widely accepted method used in conducting a toolmark examination is a side-by-side, microscopic comparison of the markings on a questioned material item to known source marks imparted by a tool.”\(^312\)

Background

In the previous section, PCAST expressed concerns about certain foundational documents underlying the scientific discipline of firearm and tool mark examination. In particular, we observed that AFTE’s “Theory of Identification as it Relates to Toolmarks”—which defines the criteria for making an identification—is circular.\(^{313}\) The “theory” states that an examiner may conclude that two items have a common origin if their marks are in “sufficient agreement,” where “sufficient agreement” is defined as the examiner being convinced that the items are extremely unlikely to have a different origin. In addition, the “theory” explicitly states that conclusions are subjective.

310 Examiners can also undertake other kinds of analysis, such as for distance determinations, operability of firearms, and serial number restorations as well as the analyze primer residue to determine whether someone recently handled a weapon.

312 See: Foundational Overview of Firearm/Toolmark Identification tab on afte.org/resources/swggun-ark (accessed May 12, 2016).

Much attention in this scientific discipline has focused on trying to prove the notion that every gun produces “unique” toolmarks. In 2004, the NIJ asked the NRC to study the feasibility, accuracy, reliability, and advisability of developing a comprehensive national ballistics database of images from bullets fired from all, or nearly all, newly manufactured or imported guns for the purpose of matching ballistics from a crime scene to a gun and information on its initial owner.

In its 2008 report, an NRC committee, responding to NIJ’s request, found that “the validity of the fundamental assumptions of uniqueness and reproducibility of firearms-related toolmarks” had not yet been demonstrated and that, given current comparison methods, a database search would likely “return too large a subset of candidate matches to be practically useful for investigative purposes.”

Of course, it is not necessary that toolmarks be unique for them to provide useful information whether a bullet may have been fired from a particular gun. However, it is essential that the accuracy of the method for comparing them be known based on empirical studies.

Firearms analysts have long stated that their discipline has near-perfect accuracy. In a 2009 article, the chief of the Firearms-Toolmarks Unit of the FBI Laboratory stated that “a qualified examiner will rarely if ever commit a false-positive error (misidentification),” citing his review, in an affidavit, of empirical studies that showed virtually no errors.

With respect to firearms analysis, the 2009 NRC report concluded that “sufficient studies have not been done to understand the reliability and reproducibility of the methods”—that is, that the foundational validity of the field had not been established.

The Scientific Working Group on Firearms Analysis (SWGGUN) responded to the criticisms in the 2009 NRC report by stating that:

The SWGGUN has been aware of the scientific and systemic issues identified in this report for some time and has been working diligently to address them. . . . [the NRC report] identifies the areas where we must fundamentally improve our procedures to enhance the quality and reliability of our scientific results, as well as better articulate the basis of our science.

316 The report states that “Toolmark and firearms analysis suffers from the same limitations discussed above for impression evidence. Because not enough is known about the variabilities among individual tools and guns, we are not able to specify how many points of similarity are necessary for a given level of confidence in the result. Sufficient studies have not been done to understand the reliability and repeatability of the methods. The committee agrees that class characteristics are helpful in narrowing the pool of tools that may have left a distinctive mark.” National Research Council. *Strengthening Forensic Science in the United States: A Path Forward.* The National Academies Press. Washington DC. (2009): 154.
Non-black-box studies of firearms analysis: Set-based analyses

Because firearms analysis is at present a subjective feature-comparison method, its foundational validity can only be established through multiple independent black box studies, as discussed above.

Although firearms analysis has been used for many decades, only relatively recently has its validity been subjected to meaningful empirical testing. Over the past 15 years, the field has undertaken a number of studies that have sought to estimate the accuracy of examiners’ conclusions. While the results demonstrate that examiners can under some circumstances identify the source of fired ammunition, many of the studies were not appropriate for assessing scientific validity and estimating the reliability because they employed artificial designs that differ in important ways from the problems faced in casework.

Specifically, many of the studies employ “set-based” analyses, in which examiners are asked to perform all pairwise comparisons within or between small samples sets. For example, a “within-set” analysis involving \(n \) objects asks examiners to fill out an \(n \times n \) matrix indicating which of the \(n(n-1)/2 \) possible pairs match. Some forensic scientists have favored set-based designs because a small number of objects gives rise to a large number of comparisons. The study design has a serious flaw, however: the comparisons are not independent of one another. Rather, they entail internal dependencies that (1) constrain and thereby inform examiners’ answers and (2) in some cases, allow examiners to make inferences about the study design. (The first point is illustrated by the observation that if A and B are judged to match, then every additional item C must match either both or neither of them—cutting the space of possible answers in half. If A and B match one another but do not match C, this creates additional dependencies. And so on. The second point is illustrated by “closed-set” designs, described below.)

Because of the complex dependencies among the answers, set-based studies are not appropriately-designed black-box studies from which one can obtain proper estimates of accuracy. Moreover, analysis of the empirical results from at least some set-based studies (“closed-set” designs) suggest that they may substantially underestimate the false positive rate.

The Director of the Defense Forensic Science Center analogized set-based studies to solving a “Sudoku” puzzle, where initial answers can be used to help fill in subsequent answers.\(^{318}\) As discussed below, DFSC’s discomfort with set-based studies led it to fund the first (and, to date, only) appropriately designed black-box study for firearms analysis.

We discuss the most widely cited of the set-based studies below. We adopt the same framework as for latent prints, focusing primarily on (1) the 95 percent upper confidence limit of the false positive rate and (2) false positive rates based on the proportion of conclusive examinations, as the appropriate measures to report (see p. 91).

\(^{318}\) PCAST interview with Jeff Salyards, Director, DFSC.
Within-set comparison

Some studies have involved within-set comparisons, in which examiners are presented, for example, with a collection of samples and asked them to determine which samples were fired from the same firearm. We reviewed two often-cited studies with this design.319,320 In these studies, most of the samples were from distinct sources, with only 2 or 3 samples being from the same source. Across the two studies, examiners identified 55 of 61 matches and made no false positives. In the first study, the vast majority of different-source samples (97 percent) were declared inconclusive; there were only 18 conclusive examinations for different-source cartridge cases and no conclusive examinations for different-source bullets.321 In the second study, the results are only described in brief paragraph and the number of conclusive examinations for different-source pairs was not reported. It is thus impossible to estimate the false positive rate among conclusive examinations, which is the key measure for consideration (as discussed above).

Set-to-set comparison/closed set

Another common design has been between-set comparisons involving a “closed set.” In this case, examiners are given a set of questioned samples and asked to compare them to a set of known standards, representing the possible guns from which the questioned ammunition had been fired. In a “closed-set” design, the source gun is

319 Smith, E. “Cartridge case and bullet comparison validation study with firearms submitted in casework.” \textit{AFTE Journal}, Vol. 37, No. 2 (2005): 130-5. In this study from the FBI, cartridges and bullets were fired from nine Ruger P89 pistols from casework. Examiners were given packets (of cartridge cases or bullets) containing samples fired from each of the 9 guns and one additional sample fired from one of the guns; they were asked to determine which samples were fired from the same gun. Among the 16 same-source comparisons, there were 13 identifications and 3 inconclusives. Among the 704 different-source comparisons, 97 percent were declared inconclusives, 2.5 percent were declared exclusions and 0 percent false positives.

320 DeFrance, C.S., and M.D. Van Arsdale. “Validation study of electrochemical rifling.” \textit{AFTE Journal}, Vol. 35, No. 1 (2003): 35-7. In this study from the FBI, bullets were fired from 5 consecutively manufactured Smith & Wesson .357 Magnum caliber rifle barrels. Each of 9 examiners received two test packets, each containing a bullet from each of the 5 guns and two additional bullets (from the different guns in one packet, from the same gun in the other); they were asked to perform all 42 possible pairwise comparisons, which included 37 different-source comparisons. Of the 45 total same-source comparisons, there were 42 identifications and 3 inconclusives. For the 333 total different-source comparisons, the paper states that there were no false positives, but does not report the number of inconclusive examinations.

321 Some laboratory policies mandate a very high bar for declaring exclusions.
always present. We analyzed four such studies in detail.322,323,324,325 In these studies, examiners were given a collection of questioned bullets and/or cartridge cases fired from a small number of consecutively manufactured firearms of the same make (3, 10, 10, and 10 guns, respectively) and a collection of bullets (or casings) known to have been fired from these same guns. They were then asked to perform a matching exercise—assigning the bullets (or casings) in one set to the bullets (or casings) in the other set.

This “closed-set” design is simpler than the problem encountered in casework, because the correct answer is always present in the collection. In such studies, examiners can perform perfectly if they simply match each bullet to the standard that is closest. By contrast, in an open-set study (as in casework), there is no guarantee that the correct source is present—and thus no guarantee that the closest match is correct. Closed-set comparisons would thus be expected to underestimate the false positive rate.

Importantly, it is not necessary that examiners be told explicitly that the study design involves a closed set. As one of the studies noted:

\begin{quote}
The participants were not told whether the questioned casings constituted an open or closed set. However, from the questionnaire/answer sheet, participants could have assumed it was a closed set and that every questioned casing should be associated with one of the ten slides.326
\end{quote}

\begin{itemize}
\item 322 Stroman, A. “Empirically determined frequency of error in cartridge case examinations using a declared double-blind format.” \textit{AFTE Journal}, Vol. 46, No. 2 (2014):157-175. In this study, bullets were fired from three Smith & Wesson guns. Each of 25 examiners received a test set containing three questioned cartridge cases and three known cartridge cases from each gun. Of the 75 answers returned, there were 74 correct assignments and one inconclusive examination.
\item 323 Brundage, D.J. “The identification of consecutively rifled gun barrels.” \textit{AFTE Journal}, Vol. 30, No. 3 (1998): 438-44. In this study, bullets were fired from 10 consecutively manufactured 9 millimeter Ruger P-85 semi-automatic pistol barrels. Each of 30 examiners received a test set containing 20 questioned bullets to compare to a set of 15 standards, containing at least one bullet fired from each of the 10 guns. Of the 300 answers returned, there were no incorrect assignments and one inconclusive examination.
\item 324 Fadul, T.G., Hernandez, G.A., Stoiloff, S., and S. Gulati. “An empirical study to improve the scientific foundation of forensic firearm and tool mark identification utilizing 10 consecutively manufactured slides.” \textit{AFTE Journal}. Vol. 45, No. 4 (2013): 376-93. An empirical study to improve the scientific foundation of forensic firearm and tool mark identification utilizing 10 consecutively manufactured slides. In this study, bullets were fired from 10 consecutively manufactured semi-automatic 9mm Ruger pistol slides. Each of 217 examiners received a test set consisting of 15 questioned casings and two known cartridge cases from each of the 10 guns. Of the 3255 answers returned, there were 3239 correct assignments, 14 inconclusive examinations and two false positives.
\item 325 Hamby, J.E., Brundage, D.J., and J.W. Thorpe. “The identification of bullets fired from 10 consecutively rifled 9mm Ruger pistol barrels: a research project involving 507 participants from 20 countries.” \textit{AFTE Journal}, Vol. 41, No. 2 (2009): 99-110. In this study, bullets were fired from 10 consecutively rifled Ruger P-85 barrels. Each of 440 examiners received a test set consisting of 15 questioned bullets and two known standards from each of the 10 guns. Of the 6600 answers returned, there were 6593 correct assignments, seven inconclusive examinations and no false positives.
\end{itemize}
Moreover, as participants find that many of the questioned casings have strong similarities to the known casings, their surmise that matching knowns are always present will tend to be confirmed.

The issue with this study design is not just a theoretical possibility: it is evident in the results themselves. Specifically, the closed-set studies have inconclusive and false-positives rate that are dramatically lower (by more than 100-fold) that those for the partly open design (Miami-Dade study) or fully open, black-box designs (Ames Laboratory) studies described below (Table 2).³²⁷

In short, the closed-set design is problematic in principle and appears to underestimate the false positive rate in practice.³²⁸ The design is not appropriate for assessing scientific validity and measuring reliability.

Set-to-set comparison/partly open set (‘Miami Dade study’)

One study involved a set-to-set comparison in which a few of the questioned samples lacked a matching known standard.³²⁹ The 165 examiners in the study were asked to assign a collection of 15 questioned samples, fired from 10 pistols, to a collection of known standards; two of the 15 questioned samples came from a gun for which known standards were not provided. For these two samples, there were 188 eliminations, 138 inconclusives and 4 false positives. The inconclusive rate was 41.8 percent and the false positive rate among conclusive examinations was 2.1 percent (confidence interval 0.6-5.25 percent). The false positive rate corresponds to an estimated rate of 1 error in 48 cases, with upper bound being 1 in 19.

As noted above, the results from the Miami-Dade study are sharply different than those from the closed-set studies: (1) the proportion of inconclusive results was 200-fold higher and (2) the false positive rate was roughly 100-fold higher.

Recent black-box study of firearms analysis

In 2011, the Forensic Research Committee of the American Society of Crime Lab Directors identified, among the highest ranked needs in forensic science, the importance of undertaking a black-box study in firearms analysis analogous to the FBI’s black-box study of latent fingerprints. DFSC, dissatisfied with the design of previous studies of firearms analysis, concluded that a black-box study was needed and should be conducted by an independent testing laboratory unaffiliated with law enforcement that would engage forensic examiners as

³²⁷ Of the 10,230 answers returned across the three studies, there were there were 10,205 correct assignments, 23 inconclusive examinations and 2 false positives.
³²⁸ Stroman (2014) acknowledges that, although the test instructions did not explicitly indicate whether the study was closed, their study could be improved if “additional firearms were used and knowns from only a portion of those firearms were used in the test kits, thus presenting an open set of unknowns to the participants. While this could increase the chances of inconclusive results, it would be a more accurate reflection of the types of evidence received in real casework.”
participants in the study. DFSC and Defense Forensics and Biometrics Agency jointly funded a study by the Ames Laboratory, a Department of Energy national laboratory affiliated with Iowa State University.330

Independent tests/open (\textquote{Ames Laboratory study})

The study employed a similar design to the FBI\textquotesingle s black-box study of latent fingerprints, with many examiners making a series of independent comparison decisions between a questioned sample and one or more known samples that may or may not contain the source. The samples all came from 25 newly purchased 9mm Ruger pistols.331 Each of 218 examiners332 was presented with 15 separate comparison problems—each consisting of one questioned sample and three known test fires from the same known gun, which might or might not have been the source.333 Unbeknownst to the examiners, there were five same-source and ten different-source comparisons. (In an ideal design, the proportion of same- and different-source comparisons would differ among examiners.)

Among the 2178 different-source comparisons, there were 1421 eliminations, 735 inconclusives and 22 false positives. The inconclusive rate was 33.7 percent and the false positive rate among conclusive examinations was 1.5 percent (upper 95 percent confidence interval 2.2 percent). The false positive rate corresponds to an estimated rate of 1 error in 66 cases, with upper bound being 1 in 46. (It should be noted that 20 of the 22 false positives were made by just 5 of the 218 examiners—strongly suggesting that the false positive rate is highly heterogeneous across the examiners.)

The results for the various studies are shown in Table 2. The tables show a striking difference between the closed-set studies (where a matching standard is always present by design) and the non-closed studies (where there is no guarantee that any of the known standards match). Specifically, the closed-set studies show a dramatically lower rate of inconclusive examinations and of false positives. With this unusual design, examiners succeed in answering all questions and achieve essentially perfect scores. In the more realistic open designs, these rates are much higher.

331 One criticism, raised by a forensic scientist, is that the study did not involve consecutively manufactured guns.

332 Participants were members of AFTE who were practicing examiners employed by or retired from a national or international law enforcement agency, with suitable training.

333 Actual casework may involve more complex situations (for example, many different bullets from a crime scene). But, a proper assessment of foundational validity must start with the question of how often an examiner can determine whether a questioned bullet comes from a specific known source.
Table 2: Results From Firearms Studies*

<table>
<thead>
<tr>
<th>Study Type</th>
<th>Results for different-source comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw Data</td>
</tr>
<tr>
<td></td>
<td>Exclusions/Inconclusives/False positives</td>
</tr>
<tr>
<td>Set-to-set/closed (four studies)</td>
<td>10,205/23/2</td>
</tr>
<tr>
<td>Set-to-set/partly open (Miami-Dade study)</td>
<td>188/138/4</td>
</tr>
<tr>
<td>Black-box study (Ames Laboratory study)</td>
<td>1421/735/22</td>
</tr>
</tbody>
</table>

[^334]: “Inconclusives”: Proportion of total examinations that were called inconclusive. “Raw Data”: Number of false positives divided by number of conclusive examinations involving questioned items without a corresponding known (for set-to-set/slightly open) or non-mated pairs (for independent/open). “Freq. (Confidence Bound)”: Point estimate of false positive frequency, with the upper 95 percent confidence bounds. “Estimated”: The odds of a false positive occurring, based on the observed proportion of false positives. “Bound”: The odds of a false positive occurring, based on the upper bound of the confidence interval—that is, the rate could reasonably be as high as this value.

Conclusions

The early studies indicate that examiners can, under some circumstances, associate ammunition with the gun from which it was fired. However, as described above, most of these studies involved designs that are not appropriate for assessing the scientific validity or estimating the reliability of the method as practiced. Indeed, comparison of the studies suggests that, because of their design, many frequently cited studies seriously underestimate the false positive rate.

At present, there is only a single study that was appropriately designed to test foundational validity and estimate reliability (Ames Laboratory study). Importantly, the study was conducted by an independent group, unaffiliated with a crime laboratory. Although the report is available on the web, it has not yet been subjected to peer review and publication.

The scientific criteria for foundational validity require appropriately designed studies by more than one group to ensure reproducibility. Because there has been only a single appropriately designed study, the current evidence falls short of the scientific criteria for foundational validity.[^335] There is thus a need for additional, appropriately designed black-box studies to provide estimates of reliability.

[^334]: The rates for all examinations are, reading across rows: 1 in 5115; 1 in 1416; 1 in 83; 1 in 33; 1 in 99; and 1 in 66.

[^335]: The DOJ asked PCAST to review a recent paper, published in July 2016, and judge whether it constitutes an additional appropriately designed black-box study of firearms analysis (that is, the ability to associate ammunition with a particular gun). PCAST carefully reviewed the paper, including interviewing the three authors about the study design. Smith, T.P.,
Finding 6: Firearms analysis

Foundational validity. PCAST finds that firearms analysis currently falls short of the criteria for foundational validity, because there is only a single appropriately designed study to measure validity and estimate reliability. The scientific criteria for foundational validity require more than one such study, to demonstrate reproducibility.

Whether firearms analysis should be deemed admissible based on current evidence is a decision that belongs to the courts.

If firearms analysis is allowed in court, the scientific criteria for validity as applied should be understood to require clearly reporting the error rates seen in appropriately designed black-box studies (estimated at 1 in 66, with a 95 percent confidence limit of 1 in 46, in the one such study to date).

The paper involves a novel and complex design that is unlike any previous study. Briefly, the study design was as follows: (1) six different types of ammunition were fired from eight 40 caliber pistols from four manufacturers (two Taurus, two Sig Sauer, two Smith and Wesson, and two Glock) that had been in use in the general population and obtained by the San Francisco Police Department; (2) tests kits were created by randomly selecting 12 samples (bullets or cartridge cases); (3) 31 examiners were told that the ammunition was all recovered from a single crime scene and were asked to prepare notes describing their conclusions about which sets of samples had been fired from the same gun; and (4) based on each examiner’s notes, the authors sought to re-create the logical path of comparisons followed by each examiner and calculate statistics based on this inferred numbers of comparisons performed by each examiner.

While interesting, the paper clearly is not a black-box study to assess the reliability of firearms analysis to associate ammunition with a particular gun, and its results cannot be compared to previous studies. Specifically: (1) The study employs a within-set comparison design (interdependent comparisons within a set) rather than a black-box design (many independent comparisons); (2) The study involves only a small number of examiners; (3) The central question with respect to firearms analysis is whether examiners can associate spent ammunition with a particular gun, not simply with a particular make of gun. To answer this question, studies must assess examiners’ performance on ammunition fired from different guns of the same make (“within-class” comparisons) rather than from guns of different makes (“between-class” comparison); the latter comparison is much simpler because guns of different makes produce marks with distinctive “class” characteristics (due to the design of the gun), whereas guns of the same make must be distinguished based on “randomly acquired” features of each gun (acquired during rifling or in use). Accordingly, previous studies have employed only within-class comparisons. In contrast, the recent study consists of a mixture of within- vs. between-class comparisons, with the substantial majority being the simpler between-class comparisons. To estimate the false-positive rate for within-class comparisons (the relevant quantity), one would need to know the number of independent tests involving different-source within-class comparisons resulting in conclusive examinations (identification or elimination). The paper does not distinguish between within- and between-class comparisons, and the authors noted that they did not perform such analysis.

PCAST’s comments are not intended as a criticism of the recent paper, which is a novel and valuable research project. They simply respond to DOJ’s specific question: the recent paper does not represent a black-box study suitable for assessing scientific validity or estimating the accuracy of examiners to associate ammunition with a particular gun.
Validity as applied. If firearms analysis is allowed in court, validity as applied would, from a scientific standpoint, require that the expert:

(1) has undergone rigorous proficiency testing on a large number of test problems to evaluate his or her capability and performance, and discloses the results of the proficiency testing; and

(2) discloses whether, when performing the examination, he or she was aware of any other facts of the case that might influence the conclusion.

The Path Forward

Continuing efforts are needed to improve the state of firearms analysis—and these efforts will pay clear dividends for the criminal justice system.

One direction is to continue to improve firearms analysis as a subjective method. With only one black-box study so far, there is a need for additional black-box studies based on the study design of the Ames Laboratory black-box study. As noted above, the studies should be designed and conducted in conjunction with third parties with no stake in the outcome (such as the Ames Laboratory or research centers such as the Center for Statistics and Applications in Forensic Evidence (CSAFE)). There is also a need for more rigorous proficiency testing of examiners, using problems that are appropriately challenging and publically disclosed after the test.

A second—and more important—direction is (as with latent print analysis) to convert firearms analysis from a subjective method to an objective method.

This would involve developing and testing image-analysis algorithms for comparing the similarity of tool marks on bullets. There have already been encouraging steps toward this goal. Recent efforts to characterize 3D images of bullets have used statistical and machine learning methods to construct a quantitative “signature” for each bullet that can be used for comparisons across samples. A recent review discusses the potential for surface topographic methods in ballistics and suggests approaches to use these methods in firearms examination. The authors note that the development of optical methods have improved the speed and accuracy of capturing surface topography, leading to improved quantification of the degree of similarity.

336 For example, a recent study used data from three-dimensional confocal microscopy of ammunition to develop a similarity metric to compare images. By performing all pairwise comparisons among a total of 90 cartridge cases fired from 10 pistol slides, the authors found that the distribution of the metric for same-gun pairs did not overlap the distribution of the metric for different-gun pairs. Although a small study, it is encouraging. Weller, T.J., Zheng, X.A., Thompson, R.M., and F. Tulleners. “Confocal microscopy analysis of breech face marks on fired cartridge cases from 10 consecutively manufactured pistol slides.” *Journal of Forensic Sciences*, Vol. 57, No. 4 (2012): 912-17.

In a recent study, researchers used images from an earlier study to develop a computer-assisted approach to match bullets that minimizes human input. The group’s algorithm extracts a quantitative signature from a bullet 3D image, compares the signature across two or more samples, and produces a “matching score,” reflecting the strength of the match. On the small test data set, the algorithm had a very low error rate.

There are additional efforts in the private sector focused on development of accurate high-resolution cartridge casing representations to improve accuracy and allow for higher quality scoring functions to improve and assign match confidence during database searches. The current NIBIN database uses older (non-3D) technology and does not provide a scoring function or confidence assignment to each candidate match. It has been suggested that a scoring function could be used for blind verification for human examiners.

Given the tremendous progress over the past decade in other fields of image analysis, we believe that fully automated firearms analysis is likely to be possible in the near future. However, efforts are currently hampered by lack of access to realistically large and complex databases that can be used to continue development of these methods and validate initial proposals.

NIST, in coordination with the FBI Laboratory, should play a leadership role in propelling this transformation by creating and disseminating appropriate large datasets. These agencies should also provide grants and contracts to support work—and systematic processes to evaluate methods. In particular, we believe that “prize” competitions—based on large, publicly available collections of images—could attract significant interest from academic and industry.

5.6 Footwear Analysis: Identifying Characteristics

Methodology

Footwear analysis is a process that typically involves comparing a known object, such as a shoe, to a complete or partial impression found at a crime scene, to assess whether the object is likely to be the source of the impression. The process proceeds in a stepwise manner, beginning with a comparison of “class characteristics” (such as design, physical size, and general wear) and then moving to “identifying characteristics” or “randomly acquired characteristics (RACs)” (such as marks on a shoe caused by cuts, nicks, and gouges in the course of use).

In this report, we do not address the question of whether examiners can reliably determine class characteristics—for example, whether a particular shoeprint was made by a size 12 shoe of a particular make. While it is important that that studies be undertaken to estimate the reliability of footwear analysis aimed at

339 On July 7, 2016 NIST released the NIST Ballistics Toolmark Research Database (NBTRD) as an open-access research database of bullet and cartridge case toolmark data (tsapps.nist.gov/NRBTID). The database contains reflectance microscopy images and three-dimensional surface topography data acquired by NIST or submitted by users.
determining class characteristics, PCAST chose not to focus on this aspect of footwear examination because it is not inherently a challenging measurement problem to determine class characteristics, to estimate the frequency of shoes having a particular class characteristic, or (for jurors) to understand the nature of the features in question.

Instead, PCAST focused on the reliability of conclusions, based on RACs, that an impression was likely to have come from a specific piece of footwear. This is a much harder problem, because it requires knowing how accurately examiners identify specific features shared between a shoe and an impression, how often they fail to identify features that would distinguish them, and what probative value should be ascribed to a particular RAC. Despite the absence of empirical studies that measure examiners’ accuracy, authorities in the footwear field express confidence that they can identify the source of an impression based on a single RAC.

As described in a 2009 article by an FBI forensic examiner published in the FBI’s Forensic Science Communications:

> An examiner first determines whether a correspondence of class characteristics exists between the questioned footwear impression and the known shoe. If the examiner deems that there are no inconsistencies in class characteristics, then the examination progresses to any identifying characteristics in the questioned impression. The examiner compares these characteristics with any identifying characteristics observed on the known shoe. Although unpredictable in their occurrence, the size, shape, and position of these characteristics have a low probability of recurrence in the same manner on a different shoe. Thus, combined with class characteristics, even one identifying characteristic is extremely powerful evidence to support a conclusion of identification.

In support, the article cites a leading textbook on footwear identification:

> According to William J. Bodziak (2000), “Positive identifications may be made with as few as one random identifying characteristic, but only if that characteristic is confirmable; has sufficient definition, clarity, and features; is in the same location and orientation on the shoe outsole; and in the opinion of an experienced examiner, would not occur again on another shoe.”

The article points to a mathematical model by Stone that claims that the chance is 1 in 16,000 that two shoes would share one identifying characteristics and 1 in 683 billion that they would share three characteristics.

Such claims for “identification” based on footwear analysis are breathtaking—but lack scientific foundation.

The statement by Bodziak has two components: (1) that the examiner consistently observes a demonstrable RAC in a set of impressions and (2) that the examiner is positive that the RAC would not occur on another shoe. The

first part is not unreasonable, but the second part is deeply problematic: It requires the examiner to rely on recollections and guesses about the frequency of features.

The model by Stone is entirely theoretical: it makes many unsupported assumptions (about the frequency and statistical independence of marks) that it does not test in any way.

The entire process—from choice of features to include (and ignore) and the determination of rarity—relies entirely on an examiner’s subjective judgment. Under such circumstances, it is essential that the scientific validity of the method and estimates of its reliability be established by multiple, appropriate black-box studies.344

Background
The 2009 NRC report cited some papers that cast doubt on whether footwear examiners reach consistent conclusions when presented with the same evidence. For example, the report contained a detailed discussion of a 1996 European paper that presented examiners with six mock cases—two involving worn shoes from crime scenes, four with new shoes in which specific identifying characteristics had been deliberately added; the paper reported considerable variation in their answers.345 PCAST also notes a 1999 Israeli study involving two cases from crime scenes that reached similar conclusions.346

In response to the 2009 NRC report, a 2013 paper claimed to demonstrate that American and Canadian footwear analysts exhibit greater consistency than seen in the 1996 European study.347 However, this study differed substantially because the examiners in this study did not conduct their own examinations. For example, the photographs were pre-annotated to call out all relevant features for comparison—that is, the examiners were not asked to identify the features.348 Thus, the study, by virtue of its design, cannot address the consistency of the examination process.

Moreover, the fundamental issue is not one of consistency (whether examiners give the same answer) but rather of accuracy (whether they give the right answer). Accuracy can be evaluated only from large, appropriately designed black-box studies.

344 In addition to black-box studies, white-box studies are also valuable to identify the sources of errors.
348 The paper states that “All characteristics and observations that were to be considered by the examiners during the comparisons were clearly identified and labeled for each impression.”
Studies of Scientific Validity and Reliability

PCAST could find no black-box studies appropriately designed to establish the foundational validity of identifications based on footwear analysis.

Consistent with our conclusion, the OSAC Footwear and Tire subcommittee recently identified the need for both black-box and white-box examiner reliability studies—citing it as a “major gap in current knowledge” in which there is “no or limited current research being conducted.”

Finding 7: Footwear analysis

Foundational validity. PCAST finds there are no appropriate empirical studies to support the foundational validity of footwear analysis to associate shoeprints with particular shoes based on specific identifying marks (sometimes called “randomly acquired characteristics”). Such conclusions are unsupported by any meaningful evidence or estimates of their accuracy and thus are not scientifically valid.

PCAST has not evaluated the foundational validity of footwear analysis to identify class characteristics (for example, shoe size or make).

The Path Forward

In contrast to latent fingerprint analysis and firearms analysis, there is little research on which to build with respect to conclusions that seek to associate a shoeprint with a particular shoe (identification conclusions).

New approaches will be needed to develop paradigms. As an initial step, the FBI Laboratory is engaging in a study examining a set of 700 similar boots that were worn by FBI Special Agent cadets during their 16-week training program. The study aims to assess whether RACs are observed on footwear from different individuals. While such “uniqueness” studies (i.e., demonstrations that many objects have distinct features) cannot establish foundational validity (see p. 42), the impressions generated from the footwear could provide an initial dataset for (1) a pilot black-box study and (2) a pilot database of feature frequencies. Importantly, NIST is beginning a study to see if it is possible to quantify the footwear examination process, or at minimum aspects of the process, in an effort to increase the objectivity of footwear analysis.

Separately, evaluations should be undertaken concerning the accuracy and reliability of determinations about class characteristics, a topic that is not addressed in this report.

5.7 Hair Analysis

Forensic hair examination is a process by which examiners compare microscopic features of hair to determine whether a particular person may be the source of a questioned hair. As PCAST was completing this report, the DOJ released for comment guidelines concerning testimony on hair examination that included supporting documents addressing the validity and reliability of the discipline. While PCAST has not undertaken a comprehensive review of the discipline, we undertook a review of the supporting document in order to shed further light on the standards for conducting a scientific evaluation of a forensic feature-comparison discipline.

The supporting document states that “microscopic hair comparison has been demonstrated to be a valid and reliable scientific methodology,” while noting that “microscopic hair comparisons alone cannot lead to personal identification and it is crucial that this limitation be conveyed both in the written report and in testimony.”

Foundational Studies of Microscopic Hair Examination

In support of its conclusion that hair examination is valid and reliable, the DOJ supporting document discusses five studies of human hair comparison. The primary support is a series of three studies by Gaudette in 1974, 1976 and 1978. The 1974 and 1976 studies focus, respectively, on head hair and pubic hair. Because the designs and results are similar, we focus on the head hair study.

The DOJ supporting document states that “In the head hair studies, a total of 370,230 intercomparisons were conducted, with only nine pairs of hairs that could not be distinguished”—corresponding to a false positive rate of less than 1 in 40,000. More specifically, the design of this 1974 study was as follows: a single examiner (1) scored between 6 and 11 head hairs from each of 100 individuals (a total of 861 hairs) with respect to 23 distinct categories (with a total of 96 possible values); (2) compared the hairs from different individuals, to identify those pairs of hairs with fewer than four differences; and (3) compared these pairs of hairs microscopically to see if they could be distinguished.

The DOJ supporting document fails to note that these studies were strongly criticized by other scientists for flawed methodology. The most serious criticism was that Gaudette compared only hairs from different individuals, but did not look at hairs from the same individual. As pointed out by a 1990 paper by two authors at the Hair and Fibre Unit of the Royal Canadian Mounted Police Forensic Laboratory (as well as in other papers),

the apparently low false positive rate could have resulted from examiner bias—that is, that the examiner explicitly knew that all hairs being examined came from different individuals and thus could be inclined, consciously or unconsciously, to search for differences.353 In short, one cannot appropriately assess a method’s false-positive rate without simultaneously assessing its true-positive rate (sensitivity). In the 1990 paper, the authors used a similar study design, but employed two examiners who examined all pairs of hairs. They found non-repeatability for the individual examiners (“each examiner had considerable day-to-day variation in hair feature classification”) and non-reproducibility between the examiners (“in many cases, the examiners classified the same hairs differently”). Most notably, they found that, while the examiners found no matches between hairs from different individuals, they also found almost no consistent matches among hairs from the same person. Of 15 pairs of same-source hairs that the authors determined should have been declared to match, only two were correctly called by both examiners.

In Gaudette’s 1978 study, the author gave a different hair to each of three examiner trainees, who had completed one year of training, and asked them to identify any matching samples among a reference set of 100 hairs (which, unbeknownst to the examiners, came from 100 different people, including the sources of the hairs). The three examiners reported 1, 1 and 4 matches, consisting of 3 correct and 3 incorrect answers. Of the declared matches, 50 percent were thus false positive associations. Among the 300 total comparisons, the overall false positive rate was 1 percent, which notably is 400-fold higher than the rate estimated in the 1974 study.

Interestingly, we noted that the DOJ supporting document wrongly reports the results of the study—claiming that the third examiner trainee made only 1 error, rather than 3 errors. The explanation for this discrepancy is found in a remarkably frank passage of the text, which illustrates the need for employing rigorous protocols in evaluating the results of experiments:

“Two trainees correctly identified one hair and only one hair as being similar to the standard. The third trainee first concluded that there were four hairs similar to the standard. Upon closer examination and consultation with the other examiners, he was easily able to identify one of his choices as being incorrect. However, he was still convinced that there were three hairs similar to the standard, the correct one and two others. Examination by the author brought the opinion that one of these two others could be eliminated but that the remaining one was indistinguishable from hairs in the standard. Another experienced examiner then studied the hairs and also concluded that one of the two others could be eliminated. This time, however, it was the opposite to the one picked by the author!”354

Ex post facto reclassification of errors is generally not advisable in studies pertaining to validity and reliability.

353 In addition, inconsistency in scoring features would add random noise to any structure in the data (e.g., feature correlations) and thereby decrease the frequency of matches occurring by chance.

The two other human-hair studies discussed in the DOJ supporting document are also problematic. A 1983 paper involved hair samples from 100 individuals, classified into three racial groups. After the author had extensively studied the hairs, she asked a neutral party to set up seven “blind” challenge problems for her—by selecting 10 questioned hairs and 10 known hairs (across groups in three cases, within a group in four cases). The results consist of a single sentence in which the author simply states that she performed with “100 percent accuracy.” Self-reported performance on a test is not generally regarded as appropriate scientific methodology.

A 1984 paper studied hairs from 17 pairs of twins (9 fraternal, 6 identical and 2 unknown zygosity) and one set of identical triplets. Interestingly, the hairs from identical twins showed no greater similarity than the hairs from fraternal twins. In the sole test designed to simulate forensic casework, two examiners were given seven challenge problems, each consisting of comparing a questioned hair to between 5 and 10 known hairs. The false positive rate was 1 in 12, which is roughly 3300-fold higher than in Gaudette’s 1974 study of hair from unrelated individuals.

PCAST finds that, based on their methodology and results, the papers described in the DOJ supporting document do not provide a scientific basis for concluding that microscopic hair examination is a valid and reliable process.

After describing the scientific papers, the DOJ document goes on to discuss the conclusions that can be drawn from hair comparison:

These studies have also shown that microscopic hair comparison alone cannot lead to personal identification and it is crucial that this limitation be conveyed both in the written report and in testimony.

The science of microscopic hair comparison acknowledges that the microscopic characteristics exhibited by a questioned hair may be encompassed by the range of characteristics exhibited by known hair samples of more than one person. If a questioned hair is associated with a known hair sample that is truly not the source, it does not mean that the microscopic hair association is in error. Rather, it highlights the limitation of the science in that there is an unknown pool of people who could have contributed the questioned hair. However, studies have not determined the number of individuals who share hairs with the same or similar characteristics.

The passage violates fundamental scientific principles in two important ways. The first problem is that it uses the fact that the method’s accuracy is not perfect to dismiss the need to know the method’s accuracy at all. According to the supporting document, it is not an “error” but simply a “limitation of the science” when an examiner associates a hair with an individual who was not actually the source of the hair. This is disingenuous. When an expert witness tells a jury that a hair found at the scene of a crime is microscopically indistinguishable.

356 The DOJ supporting document mistakenly reports that the comparison-microscopy test involved comparing 100 questioned hairs with 100 known hairs.
358 The DOJ supporting document describes the results in positive terms: “In the seven tests, one examiners correctly excluded 47 of 52 samples, and a second examiner correctly excluded 49 of 52 samples.” It does not specify whether the remaining results are inconclusive results or false positives.

★ 120 ★
from a defendant’s hair, the expert and the prosecution intend the statement to carry weight. Yet, the
document goes on to say that no information is available about the proportion of individuals with similar
characteristics. As Chapter 4 makes clear, this is scientifically unacceptable. Without appropriate estimates of
accuracy, an examiner’s statement that two samples are similar—or even indistinguishable—is scientifically
meaningless: it has no probative value, and considerable potential for prejudicial impact. In short, if scientific
hair analysis is to mean something, there must be actual empirical evidence about its meaning.

The second problem with the passage is its implication that there is no relevant empirical evidence about the
accuracy of hair analysis. In fact, such evidence was generated by the FBI Laboratory. We turn to this point
next.

FBI Study Comparing Microscopic Hair Examination and DNA Analysis

A particularly concerning aspect of the DOJ supporting document is its treatment of the FBI study on hair
examination discussed in Chapter 2. In that 2002 study, FBI personnel used mitochondrial DNA analysis to re-
examine 170 samples from previous cases in which the FBI Laboratory had performed microscopic hair
examination. The authors found that, in 9 of 80 cases (11 percent) in which the FBI Laboratory had found the
hairs to be microscopically indistinguishable, the DNA analysis showed that the hairs actually came from
different individuals.

The 2002 FBI study is a landmark in forensic science because it was the first study to systematically and
comprehensively analyze a large collection of previous casework to measure the frequency of false-positive
associations. Its conclusion is of enormous importance to forensic science, to police, to courts and to juries:
When hair examiners conclude in casework that two hair samples are microscopically indistinguishable, the hairs
often (1 in 9 times) come from different sources.

Surprisingly, the DOJ document completely ignores this key finding. Instead, it references the FBI study only to
support the proposition that DNA analysis “can be used in conjunction with microscopic hair comparison,” citing
“a 2002 study, which indicated that out of 80 microscopic associations, approximately 88 percent were also
included by additional mtDNA testing.” The document fails to acknowledge that the remaining cases were
found to be false associations—that is, results that, if presented as evidence against a defendant, would mislead
a jury about the origins of the hairs.359

Conclusion

Our brief review is intended simply to illustrate potential pitfalls in evaluations of the foundational validity and
reliability of a method. PCAST is mindful of the constraints that DOJ faces in undertaking scientific evaluations of

359 In a footnote, the document also takes pains to note that paper cannot be taken to provide an estimate of the false-
positive rate for microscopic hair comparison, because it contains no data about the number of different-sources
comparison that examiners correctly excluded. While this statement is correct, it is misleading—because the paper provides
an estimate of a far more important quantity—namely, the frequency of false associations that occurred in actual
casework.
the validity and reliability of forensic methods, because critical evaluations by DOJ might be taken as admissions that could be used to challenge past convictions or current prosecutions.

These issues highlight why it is important for evaluations of scientific validity and reliability to be carried out by a science-based agency that is not itself involved in the application of forensic science within the legal system (see Section 6.1).

They also underscore why it is important that quantitative information about the reliability of methods (e.g., the frequency of false associations in hair analysis) be stated clearly in expert testimony. We return to this point in Chapter 8, where we consider the DOJ’s proposed guidelines, which would bar examiners from providing information about the statistical weight or probability of a conclusion that a questioned hair comes from a particular source.

5.8 Application to Additional Methods

Although we have undertaken detailed evaluations of only six specific methods and included a discussion of a seventh method, the basic analysis can be applied to assess the foundational validity of any forensic feature-comparison method—including traditional forensic disciplines (such as document examination) as well as methods yet to be developed (such as microbiome analysis or internet-browsing patterns).

We note that the evaluation of scientific validity is based on the available scientific evidence at a point in time. Some methods that have not been shown to be foundationally valid may ultimately be found to be reliable—although significant modifications to the methods may be required to achieve this goal. Other methods may not be salvageable—as was the case with compositional bullet lead analysis and is likely the case with bitemarks. Still others may be subsumed by different but more reliable methods, much as DNA analysis has replaced other methods in many instances.

5.9 Conclusion

As the chapter above makes clear, many forensic feature-comparison methods have historically been assumed rather than established to be foundationally valid based on appropriate empirical evidence. Only within the past decade has the forensic science community begun to recognize the need to empirically test whether specific methods meet the scientific criteria for scientific validity. Only in the past five years, for example, have there been appropriate studies that establish the foundational validity and measure the reliability of latent fingerprint analysis. For most subjective methods, there are no appropriate black-box studies with the result that there is no appropriate evidence of foundational validity or estimates of reliability.

The scientific analysis and findings in Chapters 4 and 5 are intended to help focus the relevant actors on how to ensure scientific validity, both for existing technologies and for technologies still to be developed.

PCAST expects that some forensic feature-comparison methods may be rejected by courts as inadmissible because they lack adequate evidence of scientific validity. We note that decisions to exclude unreliable methods have historically helped propel major improvements in forensic science—as happened in the early days
of DNA evidence—with the result that some methods become established (possibly in revised form) as scientifically valid, while others are discarded.

In the remaining chapters, we offer recommendations on specific actions that could be taken by the Federal Government—including science-based agencies (NIST and OSTP), the FBI Laboratory, the Attorney General, and the Federal judiciary—to ensure the scientific validity and reliability of forensic feature-comparison methods and promote their more rigorous use in the courtroom.
6. Actions to Ensure Scientific Validity in Forensic Science: Recommendations to NIST and OSTP

Based on the scientific findings in Chapters 4 and 5, PCAST has identified actions that we believe should be taken by science-based Federal agencies—specifically, NIST and OSTP—to ensure the scientific validity of forensic feature-comparison methods.

6.1 Role for NIST in Ongoing Evaluation of Foundational Validity

There is an urgent need for ongoing evaluation of the foundational validity of important methods, to provide guidance to the courts, the DOJ, and the forensic science community. Evaluations should be undertaken of both existing methodologies that have not yet met the scientific standards for foundational validity and new methodologies that are being and will be developed in the years ahead. To ensure that the scientific judgments are unbiased and independent, such evaluations must clearly be conducted by a science agency with no stake in the outcome.\(^{360}\)

This responsibility should be lodged with NIST. NIST is the world’s leading metrological laboratory, with a long and distinguished history in the science and technology of measurement. It has tremendous experience in designing and carrying out validation studies, as well as assessing the foundational validity and reliability of laboratory techniques and practices. NIST’s mission of advancing measurement science, technology, and standards has expanded from traditional physical measurement standards to respond to many other important societal needs, including those of forensic science, in which NIST has vigorous programs.\(^{361}\) As described above, NIST has begun to lead a number of important efforts to strengthen the forensic sciences, including its roles with respect to NCFS and OSAC.

PCAST recommends that NIST be tasked with responsibility for preparing an annual report evaluating the foundational validity of key forensic feature-comparison methods, based on available, published empirical studies. These evaluations should be conducted under the auspices of NIST, with input from additional expertise as deemed necessary from experts outside forensic science, and overseen by an appropriate review panel. The reports should, as a minimum, produce assessments along the lines of those in this report, updated as appropriate. Our intention is not that NIST have a formal regulatory role with respect to forensic science, but rather that NIST’s evaluations help inform courts, the DOJ, and the forensic science community.

\(^{360}\) For example, agencies that apply forensic feature-comparison methods within the legal system have a clear stake in the outcome of such evaluations.

\(^{361}\) See: www.nist.gov/forensics.
We do not expect NIST to take responsibility for conducting the necessary validation studies. However, NIST should advise on the design and execution of such studies. NIST could carry out some studies through its own intramural research program and through CSAFE. However, the majority of studies will likely be conducted by other groups—such as NSF’s planned Industry/University Cooperative Research Centers; the FBI Laboratory; the U.S. national laboratories; other Federal agencies; state laboratories; and academic researchers.

We note that the NCFS has recently endorsed the need for independent scientific review of forensic science methods. A Views Document overwhelmingly approved by the commission in June 2016 stated that, “All forensic science methodologies should be evaluated by an independent scientific body to characterize their capabilities and limitations in order to accurately and reliably answer a specific and clearly defined forensic question” and that “The National Institute of Standards and Technology (NIST) should assume the role of independent scientific evaluator within the justice system for this purpose.”

Finally, we believe that the state of forensic science would be improved if papers on the foundational validity of forensic feature-comparison methods were published in leading scientific journals rather than in forensic-science journals, where, owing to weaknesses in the research culture of the forensic science community discussed in this report, the standards for peer review are less rigorous. Commendably, FBI scientists published its black-box study of latent fingerprints in the *Proceedings of the National Academy of Sciences*. We suggest that NIST explore with one or more leading scientific journals the possibility of creating a process for rigorous review and online publication of important studies of foundational validity in forensic science. Appropriate journals could include *Metrologia*, a leading international journal in pure and applied metrology, and the *Proceedings of the National Academy of Sciences*.

6.2 Accelerating the Development of Objective Methods

As described throughout the report, objective methods are generally preferable to subjective methods. The reasons include greater accuracy, greater efficiency, lower risk of human error, lower risk of cognitive bias, and greater ease of establishing foundational validity and estimating reliability. Where possible, vigorous efforts should be undertaken to transform subjective methods into objective methods.

Two forensic feature-comparison methods—latent fingerprint analysis and firearms analysis—are ripe for such transformation. As discussed in the previous chapter, there are strong reasons to believe that both methods can be made objective through automated image analysis. In addition, DNA analysis of complex mixtures has recently been converted into a foundationally valid objective method for a limited range of mixtures, but additional work will be needed to expand the limits of the range.

NIST, in conjunction with the FBI Laboratory, should play a leadership role in propelling this transformation by (1) the creation and dissemination of large datasets to support the development and testing of methods by both

companies and academic researchers, (2) grant and contract support, and (3) sponsoring processes, such as prize competitions, to evaluate methods.

6.3 Improving the Organization for Scientific Area Committees

The creation by NIST of OSAC was an important step in strengthening forensic science practice. The organizational design—which houses all of the subject area communities under one structure and encourages cross-disciplinary communication and coordination—is a significant improvement over the previous Scientific Working Groups (SWGs), which functioned less formally as stand-alone committees.

However, initial lessons from its first years of operation have revealed some important shortcomings. OSAC’s membership includes relatively few independent scientists: it is dominated by forensic professionals, who make up more than two-thirds of its members. Similarly, it has few independent statisticians: while virtually all of the standards and guidelines evaluated by this body need consideration of statistical principles, OSAC’s 600 members include only 14 statisticians spread across all four Science Area Committees and 23 subcommittees.

Restructuring

PCAST concludes that OSAC lacks sufficient independent scientific expertise and oversight to overcome the serious flaws in forensic science. Some restructuring is necessary to ensure that independent scientists and statisticians have a greater voice in the standards development process, a requirement for meaningful scientific validity. Most importantly, OSAC should have a formal committee—a Metrology Resource Committee—at the level of the other three Resource Committees (the Legal Resource Committee, the Human Factors Committee, and the Quality Infrastructure Committee). This Committee should be composed of laboratory scientists and statisticians from outside the forensic science community and charged with reviewing each standard and guideline that is recommended for registry approval by the Science Area Committees before it is sent for final review the Forensic Science Standards Board (FSSB).

Availability of OSAC Standards

OSAC is not a formal standard-setting body. It reviews and evaluates standards relevant to forensic science developed by standards developing organizations such as ASTM International, the National Fire Protection Association (NFPA) and the International Organization for Standardization (ISO) for inclusion on the OSAC Registries of Standards and Guidelines. The OSAC evaluation process includes a public comment period. OSAC, working with the standards developers, has arranged for the content of standards under consideration to be accessible to the public during the public comment period. Once approved by OSAC, a standard is listed, by title, on a public registry maintained by NIST. It is customary for some standards developing organization, including ASTM International, to charge a fee for a licensed copy of each copyrighted standard and to restrict users from distributing these standards.363,364

363 For a list of ASTM’s forensic science standards, see: www.astm.org/DIGITAL_LIBRARY/COMMIT/PAGES/E30.htm.
364 The American Academy of Forensic Sciences (AAFS) will also become an accredited Standards Developing Organization (SDO) and could, in the future, develop standards for review and listing by OSAC.

★ 126 ★
NIST recently negotiated a licensing agreement with ASTM International that, for a fee, allows federal, state and local government employees online access to ASTM Committee E30 standards. However, this list does not include indigent defendants, private defense attorneys, or large swaths of the academic research community. At present, contracts have been negotiated with the other SDOs that have standards currently under review by the OSAC. PCAST believes it is important that standards intended for use in the criminal justice system are widely available to all who may need access. It is important that the standards be readily available to defendants and to external observers, who have an important role to play in ensuring quality in criminal justice.

NIST should ensure that the content of OSAC-registered standards and guidelines are freely available to any party that may desire them in connection with a legal case or for evaluation and research, including by aligning with the policies related to reasonable availability of standards in the Office of Management and Budget Circular A-119, Federal Participation in the Development and Use of Voluntary Consensus Standards and Conformity Assessment Activities and the Office of the Federal Register, IBR (incorporation by reference) Handbook.

6.4 Need for an R&D Strategy for Forensic Science

The 2009 NRC report found that there is an urgent need to strengthen forensic science, noting that, “Forensic science research is not well supported, and there is no unified strategy for developing a forensic science research plan across federal agencies.”

It is especially important to create and support a vibrant academic research community rooted in the scientific culture of universities. This will require significant funding to support academic research groups, but will pay big dividends in driving quality and innovation in both existing and entirely new methods.

Both NIST and NSF have recently taken initial steps to help bridge the significant gaps between the forensic practitioner and academic research communities through multi-disciplinary research centers. These centers promise to engage the broader research community in advancing forensic science and create needed links between the forensic science community and a broad base of research universities and could help drive forward critical foundational research.

Nonetheless, as noted in Chapter 2, the total level of Federal funding by NIJ, NIST, and NSF to the academic community for fundamental research in forensic science is extremely small. Substantially larger funding will be needed to develop a robust research community and to support the development and evaluation of promising new technologies.

365 According to the revised contract, ASTM will provide unlimited web-based access for all ASTM committee E30 Forensic Science Standards to: OSAC members and affiliates; NIST and Federal/State/Local Crime Laboratories; Public Defenders Offices; Law Enforcement Agencies; Prosecutor Offices; and Medical Examiner/and Coroners Offices.
366 PCAST expresses no opinion about the appropriateness of paywalls for standards in areas other than criminal justice.
Federal R&D efforts in forensic science, both intramural and extramural, need to be better coordinated. No one agency has lead responsibility for ensuring that the forensic sciences are adequately supported. Greater coordination is needed across the relevant Federal agencies and laboratories to ensure that funding is directed to the highest priorities and that work is of high quality.

OSTP should convene relevant Federal agencies, laboratories, and stakeholders to develop a national research strategy and 5-year plan to ensure that foundational research in support of the forensic sciences is well-coordinated, solidify Federal agency commitments made to date, and galvanize further action and funding that could be taken to encourage additional foundational research, improve current forensic methods, support the creation of new research databases, and oversee the regular review and prioritization of research.

6.5 Recommendations

Based on its scientific findings, PCAST makes the following recommendations.

Recommendation 1. Assessment of foundational validity

It is important that scientific evaluations of the foundational validity be conducted, on an ongoing basis, to assess the foundational validity of current and newly developed forensic feature-comparison technologies. To ensure the scientific judgments are unbiased and independent, such evaluations must be conducted by a science agency which has no stake in the outcome.

(A) The National Institute of Standards and Technology (NIST) should perform such evaluations and should issue an annual public report evaluating the foundational validity of key forensic feature-comparison methods.

(i) The evaluations should (a) assess whether each method reviewed has been adequately defined and whether its foundational validity has been adequately established and its level of accuracy estimated based on empirical evidence; (b) be based on studies published in the scientific literature by the laboratories and agencies in the U.S. and in other countries, as well as any work conducted by NIST’s own staff and grantees; (c) as a minimum, produce assessments along the lines of those in this report, updated as appropriate; and (d) be conducted under the auspices of NIST, with additional expertise as deemed necessary from experts outside forensic science.

(ii) NIST should establish an advisory committee of experimental and statistical scientists from outside the forensic science community to provide advice concerning the evaluations and to ensure that they are rigorous and independent. The members of the advisory committee should be selected jointly by NIST and the Office of Science and Technology Policy.

(iii) NIST should prioritize forensic feature-comparison methods that are most in need of evaluation, including those currently in use and in late-stage development, based on input from the Department of Justice and the scientific community.
(iv) Where NIST assesses that a method has been established as foundationally valid, it should (a) indicate appropriate estimates of error rates based on foundational studies and (b) identify any issues relevant to validity as applied.

(v) Where NIST assesses that a method has not been established as foundationally valid, it should suggest what steps, if any, could be taken to establish the method’s validity.

(vi) NIST should not have regulatory responsibilities with respect to forensic science.

(vii) NIST should encourage one or more leading scientific journals outside the forensic community to develop mechanisms to promote the rigorous peer review and publication of papers addressing the foundational validity of forensic feature-comparison methods.

(B) The President should request and Congress should provide increased appropriations to NIST of (a) $4 million to support the evaluation activities described above and (b) $10 million to support increased research activities in forensic science, including on complex DNA mixtures, latent fingerprints, voice/speaker recognition, and face/iris biometrics.

Recommendation 2. Development of objective methods for DNA analysis of complex mixture samples, latent fingerprint analysis, and firearms analysis

The National Institute of Standards and Technology (NIST) should take a leadership role in transforming three important feature-comparison methods that are currently subjective—latent fingerprint analysis, firearms analysis, and, under some circumstances, DNA analysis of complex mixtures—into objective methods.

(A) NIST should coordinate these efforts with the Federal Bureau of Investigation Laboratory, the Defense Forensic Science Center, the National Institute of Justice, and other relevant agencies.

(B) These efforts should include (i) the creation and dissemination of large datasets and test materials (such as complex DNA mixtures) to support the development and testing of methods by both companies and academic researchers, (ii) grant and contract support, and (iii) sponsoring processes, such as prize competitions, to evaluate methods.

Recommendation 3. Improving the Organization for Scientific Area Committees process

(A) The National Institute of Standards and Technology (NIST) should improve the Organization for Scientific Area Committees (OSAC), which was established to develop and promulgate standards and guidelines to improve best practices in the forensic science community.
(i) NIST should establish a Metrology Resource Committee, composed of metrologists, statisticians, and other scientists from outside the forensic science community. A representative of the Metrology Resource Committee should serve on each of the Scientific Area Committees (SACs) to provide direct guidance on the application of measurement and statistical principles to the developing documentary standards.

(ii) The Metrology Resource Committee, as a whole, should review and publically approve or disapprove all standards proposed by the Scientific Area Committees before they are transmitted to the Forensic Science Standards Board.

(B) NIST should ensure that the content of OSAC-registered standards and guidelines are freely available to any party that may desire them in connection with a legal case or for evaluation and research, including by aligning with the policies related to reasonable availability of standards in the Office of Management and Budget Circular A-119, Federal Participation in the Development and Use of Voluntary Consensus Standards and Conformity Assessment Activities and the Office of the Federal Register, IBR (incorporation by reference) Handbook.

Recommendation 4. R&D strategy for forensic science

(A) The Office of Science and Technology Policy (OSTP) should coordinate the creation of a national forensic science research and development strategy. The strategy should address plans and funding needs for:

(i) major expansion and strengthening of the academic research community working on forensic sciences, including substantially increased funding for both research and training;

(ii) studies of foundational validity of forensic feature-comparison methods;

(iii) improvement of current forensic methods, including converting subjective methods into objective methods, and development of new forensic methods;

(iv) development of forensic feature databases, with adequate privacy protections, that can be used in research;

(v) bridging the gap between research scientists and forensic practitioners; and

(vi) oversight and regular review of forensic science research.

(B) In preparing the strategy, OSTP should seek input from appropriate Federal agencies, including especially the Department of Justice, Department of Defense, National Science Foundation, and National Institute of Standards and Technology; Federal and State forensic science practitioners; forensic science and non-forensic science researchers; and other stakeholders.
7. Actions to Ensure Scientific Validity in Forensic Science: Recommendation to the FBI Laboratory

Based on the scientific findings in Chapters 4 and 5, PCAST has identified actions that we believe should be taken by the FBI Laboratory to ensure the scientific validity of forensic feature-comparison methods.

We note that the FBI Laboratory has played an important role in recent years in undertaking high-quality scientific studies of latent fingerprint analysis. PCAST applauds these efforts and urges the FBI Laboratory to expand them.

7.1 Role for FBI Laboratory

The FBI Laboratory is a full-service, state-of-the-art facility that works to apply cutting-edge science to solve cases and prevent crime. Its mission is to apply scientific capabilities and technical services to the collection, processing, and exploitation of evidence for the Laboratory and other duly constituted law enforcement and intelligence agencies in support of investigative and intelligence priorities. Currently, the Laboratory employs approximately 750 employees and over 300 contractors to meet the broad scope of this mission.

Laboratory Capabilities and Services

The FBI has specialized capabilities and personnel to respond to incidents, collect evidence in their field, carry out forensic analyses, and provide expert witness testimony. The FBI Laboratory supports Evidence Response Teams in all 56 FBI field offices and has personnel who specialize in hazardous evidence and crime scene documentation and data collection. The Laboratory is responsible for training and supplying these response activities for FBI personnel across the U.S. The Laboratory also manages the Terrorist Explosive Device Analytical Center (TEDAC), which received nearly 1,000 evidence submissions in FY 2015 and disseminated over 2,000 intelligence products.

The FBI Laboratory employs forensic examiners to carry out analyses in a range of disciplines, including chemistry, cryptanalysis, DNA, firearms and toolmarks, latent prints, questioned documents, and trace evidence. The FBI Laboratory received over 3875 evidence submissions and authored over 4850 laboratory reports in FY 2015. In addition to carrying out casework for federal cases, the Laboratory provides support to state and local laboratories and carries out testing in state and local cases for some disciplines.

368 The FBI Laboratory supported 162 deployments and 168 response exercises, as well as delivering 239 training courses in FY 2015.
Research and Development Activities

In addition to its services, the FBI Laboratory carries out important research and development activities. The activities are critical for providing the Laboratory with the most advanced tools for advancing its mission. A strong research program and culture is also important to the Laboratory’s ability to maintain excellence and to attract and retain highly qualified personnel.

Due to the expansive scope and many requirements on its operations, only about five percent of the FBI Laboratory’s annual $100 million budget is available for research and development activities. The R&D budget is stretched across a number of applied research activities, including validation studies (for new methods or commercial products, such as new DNA analyzers). For its internal research activities, the Laboratory relies heavily on its Visiting Scientist Program, which brings approximately 25 post docs, master’s students, and bachelor’s degree students into the laboratory each year. The Laboratory has worked to partner with other government agencies to provide more resources to its research priorities as a composite initiative, and has also been able to stretch available budgets by performing critical research studies incrementally over several years.

The FBI Laboratory’s series of studies in latent print examination is an example of important foundational research that it was able to carry out incrementally over a five-year period. The work includes “black box” studies that evaluate the accuracy and reliability of latent print examiners’ conclusions, as well as “white box” studies to evaluate how the quality and quantity of features relate to latent print examiners’ decisions. These studies have resulted in a series of important publications that have helped to quantify error rates for the community of practice and assess the repeatability and reproducibility of latent fingerprint examiners’ decisions. Indeed, PCAST’s judgment that latent fingerprint analysis is foundationally valid rests heavily on the FBI black-box study. Similar lines of research are being pursued in some other disciplines, including firearms examination and questioned documents.

Unfortunately, the limited funding available for these studies—and for the intramural research program more generally—has hampered progress in testing the foundational validity of forensic science methods and in strengthening the forensic sciences. PCAST believes that the budget for the FBI Laboratory should be significantly increased, and targeted so as allow the R&D budget to be increased to a total of $20 million.

Access to databases

The FBI also has an important role to play in encouraging research by external scientists, by facilitating access, under appropriate conditions, to large forensic databases. Most of the databases routinely used in forensic analysis are not accessible for use by researchers, and the lack of access hampers progress in improving forensic science. For example, ballistic database systems such as the Bureau of Alcohol, Tobacco, Firearms and Explosives’ National Integrated Ballistic Information System (NIBIN), which is searched by firearms examiners seeking to identify a firearm or cartridge case, cannot be assessed to study its completeness, relevance or

quality, and the search algorithm that is used to identify potential matches cannot be evaluated. The NGI (formerly IAFIS) system that currently houses more than 70 million fingerprint entries would dramatically expand the data available for study; currently, there exists only one publicly available fingerprint database, consisting of 258 latent print-10 print pairs. And, the FBI’s NDIS system, which currently houses more than 14 million offender and arrestee DNA profiles. NIST has developed an inventory of all of the forensic databases that are heavily used by law enforcement and forensic scientists, with information as to their accessibility.

Substantial efforts are needed to make existing forensic databases more accessible to the research community, subject to appropriate protection of privacy, such as removal of personally identifiable information and data-use restrictions.

For some disciplines, such as firearms analysis and treadmarks, there are no significant privacy concerns.

For latent prints, privacy concerns might be ameliorated in variety of ways. For example, one might avoid the issue by (1) generating large collections of known-latent print pairs with varying quality and quantity of information through the touching and handling of natural items in a wide variety of circumstances (surfaces, pressure, distortion, etc.), (2) using software to automatically generate the “morphing transformations” from the known prints and the latent prints, and (3) applying these transformations to prints from deceased individuals to create millions of latent-known print pairs.

For DNA, protocols have been developed in human genomic research, which poses similar or greater privacy concerns, to allow access to bona fide researchers. Such policies should be feasible for forensic DNA databases as well. We note that the law that authorizes the FBI to maintain a national forensic DNA database explicitly contemplates allowing access to DNA samples and DNA analyses “if personally identifiable information is removed . . . for identification research and protocol development purposes.” Although the law does not contain an explicit statement on this point, DOJ interprets the law as allowing use for this purpose only by criminal justice agencies. It is reluctant, in the absence of statutory clarification, to provide even controlled access to other researchers. This topic deserves attention.

PCAST believes that the availability of data will speed the development of methods, tools, and software that will improve forensic science. For databases under its control, the FBI Laboratory should develop programs to make forensic databases (or subsets of those databases) accessible to researchers under conditions that protect

370 NGI standards for “Next Generation Identification” and combines multiple biometric information systems, including IAFIS, iris and face recognition systems, and others.
372 Medical examiners offices routinely collect fingerprints from deceased individuals as part of the autopsy process; these fingerprints could be collected and used to create a large database for research purposes.
373 A number of models that have been developed in the biomedical research context that allow for tiered access to sensitive data while providing adequate privacy protection could be employed here. Researchers could be required to sign Non-Disclosure Agreements (NDAs) or enter into limited use agreements. Researchers could be required to access the data on site, so that data cannot be downloaded or shared, or could be permitted to download only aggregated or summary data.
374 Federal DNA Identification Act, 42 U.S.C. §14132(b)(3)(D)).
privacy. For databases owned by others, the FBI Laboratory and NIST should each work with other agencies and companies that control the databases to develop programs providing appropriate access.

7.2 Recommendation

Based on its scientific findings, PCAST makes the following recommendation.

Recommendation 5. Expanded forensic-science agenda at the Federal Bureau of Investigation Laboratory

(A) Research programs. The Federal Bureau of Investigation (FBI) Laboratory should undertake a vigorous research program to improve forensic science, building on its recent important work on latent fingerprint analysis. The program should include:

(i) conducting studies on the reliability of feature-comparison methods, in conjunction with independent third parties without a stake in the outcome;

(ii) developing new approaches to improve reliability of feature-comparison methods;

(iii) expanding collaborative programs with external scientists; and

(iv) ensuring that external scientists have appropriate access to datasets and sample collections, so that they can carry out independent studies.

(B) Black-box studies. Drawing on its expertise in forensic science research, the FBI Laboratory should assist in the design and execution of additional black-box studies for subjective methods, including for latent fingerprint analysis and firearms analysis. These studies should be conducted by or in conjunction with independent third parties with no stake in the outcome.

(C) Development of objective methods. The FBI Laboratory should work with the National Institute of Standards and Technology to transform three important feature-comparison methods that are currently subjective—latent fingerprint analysis, firearm analysis, and, under some circumstances, DNA analysis of complex mixtures—into objective methods. These efforts should include (i) the creation and dissemination of large datasets to support the development and testing of methods by both companies and academic researchers, (ii) grant and contract support, and (iii) sponsoring prize competitions to evaluate methods.

(D) Proficiency testing. The FBI Laboratory, should promote increased rigor in proficiency testing by (i) within the next four years, instituting routine blind proficiency testing within the flow of casework in its own laboratory, (ii) assisting other Federal, State, and local laboratories in doing so as well, and (iii) encouraging routine access to and evaluation of the tests used in commercial proficiency testing.
(E) *Latent fingerprint analysis.* The FBI Laboratory should vigorously promote the adoption, by all laboratories that perform latent fingerprint analysis, of rules requiring a “linear Analysis, Comparison, Evaluation” process—whereby examiners must complete and document their analysis of a latent fingerprint before looking at any known fingerprint and should separately document any additional data used during comparison and evaluation.

(F) *Transparency concerning quality issues in casework.* The FBI Laboratory, as well as other Federal forensic laboratories, should regularly and publicly report quality issues in casework (in a manner similar to the practices employed by the Netherlands Forensic Institute, described in Chapter 5), as a means to improve quality and promote transparency.

(G) *Budget.* The President should request and Congress should provide increased appropriations to the FBI to restore the FBI Laboratory’s budget for forensic science research activities from its current level to $30 million and should evaluate the need for increased funding for other forensic-science research activities in the Department of Justice.
8. Actions to Ensure Scientific Validity in Forensic Science: Recommendations to the Attorney General

Based on the scientific findings in Chapters 4 and 5, PCAST has identified actions that we believe should be taken by the Attorney General to ensure the scientific validity of forensic feature-comparison methods and promote their more rigorous use in the courtroom.

8.1 Ensuring the Use of Scientifically Valid Methods in Prosecutions

The Federal Government has a deep commitment to ensuring that criminal prosecutions are not only fair in their process, but correct in their outcome—that is, that guilty individuals are convicted, while innocent individuals are not.

Toward this end, the DOJ should ensure that testimony about forensic evidence presented in court is scientifically valid. This report provides guidance to DOJ concerning the scientific criteria for both foundational validity and validity as applied, as well as evaluations of six specific forensic methods and a discussion of a seventh. Over the long term, DOJ should look to ongoing evaluations of forensic methods that should be performed by NIST (as described in Chapter 6).

In the interim, DOJ should undertake a review of forensic feature-comparison methods (beyond those reviewed in this report) to identify which methods used by DOJ lack appropriate black-box studies necessary to assess foundational validity. Because such subjective methods are presumptively not established to be foundationally valid, DOJ should evaluate (1) whether DOJ should present in court conclusions based on such methods and (2) whether black-box studies should be launched to evaluate those methods.

8.2 Revision of DOJ Recently Proposed Guidelines on Expert Testimony

On June 3, 2016, the DOJ released for comment a first set of proposed guidelines, together with supporting documents, on “Proposed Uniform Language for Testimony and Reports” on several forensic sciences, including latent fingerprint analysis and forensic footwear and tire impression analysis.375 On July 21, 2016, the DOJ released for comment a second set of proposed guidelines and supporting documents for several additional forensic sciences, including microscopic hair analysis, certain types of DNA analysis, and other fields.

The guidelines represent an important step forward, because they instruct DOJ examiners not to make sweeping claims that they can identify the source of a fingerprint or footprint to the exclusion of all other possible sources. PCAST applauds DOJ’s intention and efforts to bring uniformity and to prevent inaccurate testimony concerning feature comparisons.

Some aspects of the guidelines, however, are not scientifically appropriate and embody heterodox views of the kind discussed in Section 4.7. As an illustration, we focus on the guidelines for footwear and tire impression analysis and the guidelines for hair analysis.

Footwear and Tire Impression Analysis

Relevant portions of the guidelines for testimony and reports about forensic footwear and tire impression are shown in Box 6.

BOX 6. Excerpt from DOJ Proposed uniform language for testimony and reports for the forensic footwear and tire impression discipline

Statements Approved for Use in Laboratory Reports and Expert Witness Testimony Regarding Forensic Examination of Footwear and Tire Impression Evidence

Identification

1. The examiner may state that it is his/her opinion that the shoe/tire is the source of the impression because there is sufficient quality and quantity of corresponding features such that the examiner would not expect to find that same combination of features repeated in another source. This is the highest degree of association between a questioned impression and a known source. This opinion requires that the questioned impression and the known source correspond in class characteristics and also share one or more randomly acquired characteristics. This opinion acknowledges that an identification to the exclusion of all others can never be empirically proven.

Statements Not Approved for Use in Laboratory Reports and Expert Witness Testimony Regarding Forensic Examination of Footwear and Tire Impression Evidence

Exclusion of All of Others

1. The examiner may not state that a shoe/tire is the source of a questioned impression to the exclusion of all other shoes/tires because all other shoes/tires have not been examined. Examining all of the shoes/tires in the world is a practical impossibility.

These proposed guidelines have serious problems.

An examiner may opine that a shoe is the source of an impression, but not that the shoe is the source of impression to the exclusion of all other possible shoes. But, as a matter of logic, there is no difference between these two statements. If an examiner believes that X is the source of Y, then he or she necessarily believes that nothing else is the source of Y. Any sensible juror should understand this equivalence.

What then is the goal of the guidelines? It appears to be to acknowledge the possibility of error. In effect, examiners should say, “I believe X is the source of Y, although I could be wrong about that.”

This is appropriate. But, the critical question is then: How likely is it that the examiner is wrong?

There’s the rub: the guidelines bar the examiner from discussing the likelihood of error, because there is no accurate or reliable information about accuracy. In effect, examiners are instructed to say, “I believe X is the source of Y, although I could be wrong about that. But, I have no idea how often I’m wrong because we have no reliable information about that.”

Such a statement does not meet any plausible test of scientific validity. As Judge Easterly wrote in Williams v. United States, a claim of identification under such circumstances:

> has the same probative value as the vision of a psychic: it reflects nothing more than the individual’s foundationless faith in what he believes to be true. This is not evidence on which we can in good conscience rely, particularly in criminal cases, where we demand proof—real proof—beyond a reasonable doubt, precisely because the stakes are so high. 377

377 Williams v. United States, DC Court of Appeals, Decided January 21, 2016, (Easterly, concurring). We cite the analogy for its expositional value concerning the scientific point; we express no position on the role of the case as legal authority.
Hair Analysis

Relevant portions of the guidelines for testimony and reports on forensic hair examination are shown in Box 7.

BOX 7. Excerpt from DOJ Proposed uniform language for testimony and reports for the forensic hair examination discipline

Statements Not Approved for Use in Forensic Hair Examination Testimony and/or Laboratory Reports

Human Hair Comparisons

1. The examiner may state or imply that the questioned human hair is microscopically consistent with the known hair sample and accordingly, the source of the known hair sample can be included as a possible source of the questioned hair.

Statements Not Approved for Use in Forensic Hair Examination Testimony and/or Laboratory Reports

Individualization

1. The examiner may not state or imply that a hair came from a particular source to the exclusion of all others.

Statistical Weight

2. The examiner may not state or imply a statistical weight or probability to a conclusion or provide a likelihood that the questioned hair originated from a particular source.

Zero Error Rate

3. The examiner may not state or imply that the method used in performing microscopic hair examinations has a zero error rate or is infallible.

The guidelines appropriately state that examiners may not claim that they can individualize the source of a hair nor that they have a zero error rate. However, while examiners may “state or imply that the questioned human hair is microscopically consistent with the known hair sample and accordingly, the source of the known hair sample can be included as a possible source of the questioned hair,” they are barred from providing accurate information about the reliability of such conclusions. This is contrary to the scientific requirement that forensic feature-comparison methods must be supported by and accompanied by appropriate empirical estimates of reliability.

In particular, as discussed in Section 5.7, a landmark study in 2002 by scientists at the FBI Laboratory showed that, among 80 instances in actual casework where examiners concluded that a questioned hair was microscopically consistent with the known hair sample, the hair were found by DNA analysis to have come from

★ 139 ★
a different source in 11 percent of cases. The fact that such a significant proportion of conclusions were false associations is of tremendous importance in interpreting conclusions of hair examiners.

In cases of hair examination unaccompanied by DNA analysis, examiners should be required to disclose the high frequency of false associations seen in the FBI study so that juries can appropriately weigh conclusions.

Conclusion

The DOJ should revise the proposed guidelines, to bring them into alignment with scientific standards for scientific validity. The supporting documentation should also be revised, as discussed in Section 5.7.

8.3 Recommendations

Based on its scientific findings, PCAST makes the following recommendations.

<table>
<thead>
<tr>
<th>Recommendation 6. Use of feature-comparison methods in Federal prosecutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) The Attorney General should direct attorneys appearing on behalf of the Department of Justice (DOJ) to ensure expert testimony in court about forensic feature-comparison methods meets the scientific standards for scientific validity.</td>
</tr>
<tr>
<td>While pretrial investigations may draw on a wider range of methods, expert testimony in court about forensic feature-comparison methods in criminal cases—which can be highly influential and has led to many wrongful convictions—must meet a higher standard. In particular, attorneys appearing on behalf of the DOJ should ensure that:</td>
</tr>
<tr>
<td>(i) the forensic feature-comparison methods upon which testimony is based have been established to be foundationally valid, as shown by appropriate empirical studies and consistency with evaluations by the National Institute of Standards and Technology (NIST), where available; and</td>
</tr>
<tr>
<td>(ii) the testimony is scientifically valid, with the expert’s statements concerning the accuracy of methods and the probative value of proposed identifications being constrained by the empirically supported evidence and not implying a higher degree of certainty.</td>
</tr>
<tr>
<td>(B) DOJ should undertake an initial review, with assistance from NIST, of subjective feature-comparison methods used by DOJ to identify which methods (beyond those reviewed in this report) lack appropriate black-box studies necessary to assess foundational validity. Because such subjective methods are presumptively not established to be foundationally valid, DOJ should evaluate whether it is appropriate to present in court conclusions based on such methods.</td>
</tr>
<tr>
<td>(C) Where relevant methods have not yet been established to be foundationally valid, DOJ should encourage and provide support for appropriate black-box studies to assess foundational validity and measure reliability. The design and execution of these studies should be conducted by or in conjunction with independent third parties with no stake in the outcome.</td>
</tr>
</tbody>
</table>
Recommendation 7. Department of Justice guidelines on expert testimony

(A) The Attorney General should revise and reissue for public comment the Department of Justice’s (DOJ) proposed “Uniform Language for Testimony and Reports” and supporting documents to bring them into alignment with scientific standards for scientific validity.

(B) The Attorney General should issue instructions directing that:

(i) Where empirical studies and/or statistical models exist to shed light on the accuracy of a forensic feature-comparison method, an examiner should provide quantitative information about error rates, in accordance with guidelines to be established by DOJ and the National Institute of Standards and Technology, based on advice from the scientific community.

(ii) Where there are not adequate empirical studies and/or statistical models to provide meaningful information about the accuracy of a forensic feature-comparison method, DOJ attorneys and examiners should not offer testimony based on the method. If it is necessary to provide testimony concerning the method, they should clearly acknowledge to courts the lack of such evidence.

(iii) In testimony, examiners should always state clearly that errors can and do occur, due both to similarities between features and to human mistakes in the laboratory.
9. Actions to Ensure Scientific Validity in Forensic Science: Recommendations to the Judiciary

Based on the scientific findings in Chapters 4 and 5, PCAST has identified actions that we believe should be taken by the judiciary to ensure the scientific validity of evidence based on forensic feature-comparison methods and promote their more rigorous use in the courtroom.

9.1 Scientific Validity as a Foundation for Expert Testimony

In Federal courts, judges are assigned the critical role of “gatekeepers” charged with ensuring that expert testimony “rests on a reliable foundation.” Specifically, Rule 702 (c,d) of the Federal Rules of Evidence requires that (1) expert testimony must be the product of “reliable principles and methods” and (2) experts must have “reliably applied” the methods to the facts of the case. The Supreme Court has stated that judges must determine “whether the reasoning or methodology underlying the testimony is scientifically valid.”

As discussed in Chapter 3, this framework establishes an important conversation between the judiciary and the scientific community. The admissibility of expert testimony depends on a threshold test of whether it meets certain legal standards for evidentiary reliability, which are exclusively the province of the judiciary. Yet, in cases involving scientific evidence, these legal standards are to be “based upon scientific validity.”

PCAST does not opine on the legal standards, but aims in this report to clarify the scientific standards that underlie them. To ensure that the distinction between scientific and legal concepts is clear, we have adopted specific terms to refer to scientific concepts (foundational validity and validity as applied) intended to parallel legal concepts expressed in Rule 702 (c,d).

As the Supreme Court has noted, the judge’s inquiry under Rule 702 is a flexible one: there is no simple one-size-fits-all test that can be applied uniformly to all scientific disciplines. Rather, the evaluation of scientific validity should be based on the appropriate scientific criteria for the scientific field. Moreover, the appropriate scientific field should be the larger scientific discipline to which it belongs.

382 Daubert, at FN9 (“in a case involving scientific evidence, evidentiary reliability will be based on scientific validity.” [emphasis in original]).
383 Daubert, at 594.
384 For example, in Frye, the court evaluated whether a proffered lie detector had gained “standing and scientific recognition among physiological and psychological authorities,” rather than among lie detector experts. Frye v. United

★ 142 ★
In this report, PCAST has focused on forensic feature-comparison methods—which belong to the field of metrology, the science of measurement and its application. We have sought—in a form usable by courts, as well as by scientists and others who seek to improve forensic science—to lay out the scientific criteria for foundational validity and validity as applied (Chapter 4) and to illustrate their application to specific forensic feature-comparison methods (Chapter 5).

The scientific criteria are described in Finding 1. PCAST’s conclusions can be summarized as follows:

Scientific validity and reliability require that a method has been subjected to empirical testing, under conditions appropriate to its intended use, that provides valid estimates of how often the method reaches an incorrect conclusion. For subjective feature-comparison methods, appropriately designed black-box studies are required, in which many examiners render decisions about many independent tests (typically, involving “questioned” samples and one or more “known” samples) and the error rates are determined. Without appropriate estimates of accuracy, an examiner’s statement that two samples are similar—or even indistinguishable—is scientifically meaningless: it has no probative value, and considerable potential for prejudicial impact. Nothing—not personal experience nor professional practices—can substitute for adequate empirical demonstration of accuracy.

The applications to specific feature-comparison methods are described in Findings 2-7. The full set of scientific findings is collected in Chapter 10.

Finally, we note that the Supreme Court in Daubert suggested that judges should be mindful of Rule 706, which allows a court at its discretion to procure the assistance of an expert of its own choosing. Such experts can provide independent assessments concerning, among other things, the validity of scientific methods and their applications.

9.2 Role of Past Precedent

One important issue that arose throughout our deliberations was the role of past precedents.

As discussed in Chapter 5, our scientific review found that most forensic feature-comparison methods (with the notable exception of DNA analysis of single-source and simple-mixture samples) have historically been assumed rather than established to be foundationally valid. Only after it became clear in recent years (based on DNA and other analysis) that there are fundamental problems with the reliability of some of these methods has the forensic science community begun to recognize the need to empirically test whether specific methods meet the scientific criteria for scientific validity.

This creates an obvious tension, because many courts admit forensic feature-comparison methods based on longstanding precedents that were set before these fundamental problems were discovered.

385 See footnote 93 on p.44.

386 Daubert, at 595.
From a purely scientific standpoint, the resolution is clear. When new facts falsify old assumptions, courts should not be obliged to defer to past precedents: they should look afresh at the scientific issues. How are such tensions resolved from a legal standpoint? The Supreme Court has made clear that a court may overrule precedent if it finds that an earlier case was “erroneously decided and that subsequent events have undermined its continuing validity.”

PCAST expresses no view on the legal question of whether any past cases were “erroneously decided.” However, PCAST notes that, from a scientific standpoint, subsequent events have indeed undermined the continuing validity of conclusions that were not based on appropriate empirical evidence. These events include (1) the recognition of systemic problems with some forensic feature-comparison methods, including through study of the causes of hundreds of wrongful convictions revealed through DNA and other analysis; (2) the 2009 NRC report from the National Academy of Sciences, the leading scientific advisory body established by the Legislative Branch, that found that some forensic feature-comparison methods lack a scientific foundation; and (3) the scientific review in this report by PCAST, the leading scientific advisory body established by the Executive Branch, finding that some forensic feature-comparison methods lack foundational validity.

9.3 Resources for Judges

Another important issue that arose frequently in our conversations with experts was the need for better resources for judges related to evaluation of forensic feature-comparison methods for use in the courts.

The most appropriate bodies to provide such resources are the Judicial Conference of the United States and the Federal Judicial Center.

The Judicial Conference of the United States is the national policy-making body for the federal courts. Its statutory responsibility includes studying the operation and effect of the general rules of practice and procedure in the federal courts. The Judicial Conference develops best practices manuals and issues Advisory Committee notes to assist judges with respect to specific topics, including through its Standing Advisory Committee on the Federal Rules of Evidence.

The Federal Judicial Center is the research and education agency of the federal judicial system. Its statutory duties include (1) conducting and promoting research on federal judicial procedures and court operations and

388 The National Academy of Sciences was chartered by Congress in 1863 to advise the Federal government on matters of science (U.S. Code, Section 36, Title 1503).

389 The President formally established a standing scientific advisory council soon after the launch of Sputnik in 1957. It is currently titled the President’s Council of Advisors of Science and Technology (operating under Executive Order 13539, as amended by Executive Order 13596).

390 Created in 1922 under the name the Conference of Senior Circuit Judges, the Judicial Conference of the United States is currently established under 28 U.S.C. § 331.

(2) conducting and promoting orientation and continuing education and training for federal judges, court employees, and others.

PCAST recommends that the Judicial Conference of the United States, through its Subcommittee on the Federal Rules of Evidence, develop best practices manuals and an Advisory Committee note and the Federal Judicial Center develop educational programs related to procedures for evaluating the scientific validity of forensic feature-comparison methods.

9.4 Recommendation

Based on its scientific findings, PCAST makes the following recommendation.

Recommendation 8. Scientific validity as a foundation for expert testimony

(A) When deciding the admissibility of expert testimony, Federal judges should take into account the appropriate scientific criteria for assessing scientific validity including:

(i) **foundational validity**, with respect to the requirement under Rule 702(c) that testimony is the product of reliable principles and methods; and

(ii) **validity as applied**, with respect to requirement under Rule 702(d) that an expert has reliably applied the principles and methods to the facts of the case.

These scientific criteria are described in Finding 1.

(B) Federal judges, when permitting an expert to testify about a foundationally valid feature-comparison method, should ensure that testimony about the accuracy of the method and the probative value of proposed identifications is scientifically valid in that it is limited to what the empirical evidence supports. Statements suggesting or implying greater certainty are not scientifically valid and should not be permitted. In particular, courts should never permit scientifically indefensible claims such as: “zero,” “vanishingly small,” “essentially zero,” “negligible,” “minimal,” or “microscopic” error rates; “100 percent certainty” or proof “to a reasonable degree of scientific certainty;” identification “to the exclusion of all other sources;” or a chance of error so remote as to be a “practical impossibility.”

(C) To assist judges, the Judicial Conference of the United States, through its Standing Advisory Committee on the Federal Rules of Evidence, should prepare, with advice from the scientific community, a best practices manual and an Advisory Committee note, providing guidance to Federal judges concerning the admissibility under Rule 702 of expert testimony based on forensic feature-comparison methods.

(D) To assist judges, the Federal Judicial Center should develop programs concerning the scientific criteria for scientific validity of forensic feature-comparison methods.
10. Scientific Findings

PCAST’s scientific findings in this report are collected below. Finding 1, concerning the scientific criteria for scientific validity, is based on the discussion in Chapter 4. Findings 2–6, concerning foundational validity of six forensic feature-comparison methods, is based on the evaluations in Chapter 5.

Finding 1: Scientific Criteria for Scientific Validity of a Forensic Feature-Comparison Method

(1) Foundational validity. To establish foundational validity for a forensic feature-comparison method, the following elements are required:

(a) a reproducible and consistent procedure for (i) identifying features within evidence samples, (ii) comparing the features in two samples, and (iii) determining, based on the similarity between the features in two samples, whether the samples should be declared to be likely to come from the same source (“matching rule”); and

(b) empirical estimates, from appropriately designed studies from multiple groups, that establish (i) the method’s false positive rate—that is, the probability it declares a proposed identification between samples that actually come from different sources, and (ii) the method’s sensitivity—that is, the probability it declares a proposed identification between samples that actually come from the same source.

As described in Box 4, scientific validation studies should satisfy a number of criteria: (a) they should be based on sufficiently large collections of known and representative samples from relevant populations; (b) they should be conducted so that have no information about the correct answer; (c) the study design and analysis plan are specified in advance and not modified afterwards based on the results; (d) the study is conducted or overseen by individuals or organizations with no stake in the outcome; (e) data, software and results should be available to allow other scientists to review the conclusions; and (f) to ensure that the results are robust and reproducible, there should be multiple independent studies by separate groups reaching similar conclusions.

Once a method has been established as foundationally valid based on adequate empirical studies, claims about the method’s accuracy and the probative value of proposed identifications, in order to be valid, must be based on such empirical studies.

For objective methods, foundational validity can be established by demonstrating the reliability of each of the individual steps (feature identification, feature comparison, matching rule, false match probability, and sensitivity).
For subjective methods, foundational validity can be established only through black-box studies that measure how often many examiners reach accurate conclusions across many feature-comparison problems involving samples representative of the intended use. In the absence of such studies, a subjective feature-comparison method cannot be considered scientifically valid.

Foundational validity is a *sine qua non*, which can only be shown through empirical studies. Importantly, good professional practices—such as the existence of professional societies, certification programs, accreditation programs, peer-reviewed articles, standardized protocols, proficiency testing, and codes of ethics—cannot substitute for empirical evidence of scientific validity and reliability.

(2) Validity as applied. Once a forensic feature-comparison method has been established as foundationally valid, it is necessary to establish its validity as applied in a given case.

As described in Box 5, validity as applied requires that: (a) the forensic examiner must have been shown to be *capable* of reliably applying the method, as shown by appropriate proficiency testing (see Section 4.6), and must *actually* have done so, as demonstrated by the procedures actually used in the case, the results obtained, and the laboratory notes, which should be made available for scientific review by others; and (b) the forensic examiner’s assertions about the probative value of proposed identifications must be scientifically valid—including that the expert should report the overall false positive rate and sensitivity for the method established in the studies of foundational validity; demonstrate that the samples used in the foundational studies are relevant to the facts of the case; where applicable, report probative value of the observed match based on the specific features observed in the case; and not make claims or implications that go beyond the empirical evidence.

<table>
<thead>
<tr>
<th>Finding 2: DNA Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundational validity. PCAST finds that DNA analysis of single-source samples or simple mixtures of two individuals, such as from many rape kits, is an objective method that has been established to be foundationally valid.</td>
</tr>
<tr>
<td>Validity as applied. Because errors due to human failures will dominate the chance of coincidental matches, the scientific criteria for validity as applied require that an expert (1) should have undergone rigorous and relevant proficiency testing to demonstrate their ability to reliably apply the method, (2) should routinely disclose in reports and testimony whether, when performing the examination, he or she was aware of any facts of the case that might influence the conclusion, and (3) should disclose, upon request, all information about quality testing and quality issues in his or her laboratory.</td>
</tr>
</tbody>
</table>
Finding 3: DNA analysis of complex-mixture samples

Foundational validity. PCAST finds that:

(1) Combined Probability of Inclusion-based methods. DNA analysis of complex mixtures based on CPI-based approaches has been an inadequately specified, subjective method that has the potential to lead to erroneous results. As such, it is not foundationally valid.

A very recent paper has proposed specific rules that address a number of problems in the use of CPI. These rules are clearly necessary. However, PCAST has not adequate time to assess whether they are also sufficient to define an objective and scientifically valid method. If, for a limited time, courts choose to admit results based on the application of CPI, validity as applied would require that, at a minimum, they be consistent with the rules specified in the paper.

DNA analysis of complex mixtures should move rapidly to more appropriate methods based on probabilistic genotyping.

(2) Probabilistic genotyping. Objective analysis of complex DNA mixtures with probabilistic genotyping software is relatively new and promising approach. Empirical evidence is required to establish the foundational validity of each such method within specified ranges. At present, published evidence supports the foundational validity of analysis, with some programs, of DNA mixtures of 3 individuals in which the minor contributor constitutes at least 20 percent of the intact DNA in the mixture and in which the DNA amount exceeds the minimum required level for the method. The range in which foundational validity has been established is likely to grow as adequate evidence for more complex mixtures is obtained and published.

Validity as applied. For methods that are foundationally valid, validity as applied involves similar considerations as for DNA analysis of single-source and simple-mixtures samples, with a special emphasis on ensuring that the method was applied correctly and within its empirically established range.

Finding 4: Bitemark analysis

Foundational validity. PCAST finds that bitemark analysis does not meet the scientific standards for foundational validity, and is far from meeting such standards. To the contrary, available scientific evidence strongly suggests that examiners cannot consistently agree on whether an injury is a human bitemark and cannot identify the source of bitemark with reasonable accuracy.
Finding 5: Latent fingerprint analysis

Foundational validity. Based largely on two recent appropriately designed black-box studies, PCAST finds that latent fingerprint analysis is a foundationally valid subjective methodology—albeit with a false positive rate that is substantial and is likely to be higher than expected by many jurors based on longstanding claims about the infallibility of fingerprint analysis.

Conclusions of a proposed identification may be scientifically valid, provided that they are accompanied by accurate information about limitations on the reliability of the conclusion—specifically, that (1) only two properly designed studies of the foundational validity and accuracy of latent fingerprint analysis have been conducted, (2) these studies found false positive rates that could be as high as 1 error in 306 cases in one study and 1 error in 18 cases in the other, and (3) because the examiners were aware they were being tested, the actual false positive rate in casework may be higher. At present, claims of higher accuracy are not warranted or scientifically justified. Additional black-box studies are needed to clarify the reliability of the method.

Validity as applied. Although we conclude that the method is foundationally valid, there are a number of important issues related to its validity as applied.

(1) Confirmation bias. Work by FBI scientists has shown that examiners typically alter the features that they initially mark in a latent print based on comparison with an apparently matching exemplar. Such circular reasoning introduces a serious risk of confirmation bias. Examiners should be required to complete and document their analysis of a latent fingerprint before looking at any known fingerprint and should separately document any additional data used during their comparison and evaluation.

(2) Contextual bias. Work by academic scholars has shown that examiners’ judgments can be influenced by irrelevant information about the facts of a case. Efforts should be made to ensure that examiners are not exposed to potentially biasing information.

(3) Proficiency testing. Proficiency testing is essential for assessing an examiner’s capability and performance in making accurate judgments. As discussed elsewhere in this report, there is a need to improve proficiency testing, including making it more rigorous, incorporating it within the flow of casework, and disclosing test problems following a test so that they can evaluated for appropriateness by the scientific community.

From a scientific standpoint, validity as applied requires that an expert: (1) has undergone appropriate proficiency testing to ensure that he or she is capable of analyzing the full range of latent fingerprints encountered in casework and reports the results of the proficiency testing; (2) discloses whether he or she documented the features in the latent print in writing before comparing it to the known print; (3) provides a written analysis explaining the selection and comparison of the features; (4) discloses whether, when performing the examination, he or she was aware of any other facts of the case that might influence the conclusion; and (5) verifies that the latent print in the case at hand is similar in quality to the range of latent prints considered in the foundational studies.
Finding 6: Firearms analysis

Foundational validity. PCAST finds that firearms analysis currently falls short of the criteria for foundational validity, because there is only a single appropriately designed study to measure validity and estimate reliability. The scientific criteria for foundational validity require more than one such study, to demonstrate reproducibility.

Whether firearms analysis should be deemed admissible based on current evidence is a decision that belongs to the courts.

If firearms analysis is allowed in court, the scientific criteria for validity as applied should be understood to require clearly reporting the error rates seen in appropriately designed black-box studies (estimated at 1 in 66, with a 95 percent confidence limit of 1 in 46, in the one such study to date).

Validity as applied. If firearms analysis is allowed in court, validity as applied would, from a scientific standpoint, require that the expert:

1. has undergone rigorous proficiency testing on a large number of test problems to measure his or her accuracy and discloses the results of the proficiency testing; and
2. discloses whether, when performing the examination, he or she was aware of any other facts of the case that might influence the conclusion.

Finding 7: Footwear analysis

Foundational validity. PCAST finds there are no appropriate empirical studies to support the foundational validity of footwear analysis to associate shoeprints with particular shoes based on specific identifying marks (sometimes called “randomly acquired characteristics). Such conclusions are unsupported by any meaningful evidence or estimates of their accuracy and thus are not scientifically valid.

PCAST has not evaluated the foundational validity of footwear analysis to identify class characteristics (for example, shoe size or make).
Appendix A: Statistical Issues

To enhance its accessibility to a broad audience, the main text of this report avoids, where possible, the use of mathematical and statistical terminology. However, for the actual implementation of some of the principles stated in the report, somewhat more precise descriptions are necessary. This Appendix summarizes the relevant concepts from elementary statistics. 392

Sensitivity and False Positive Rate

Forensic feature-comparison methods typically aim to determine how likely it is that two samples came from the same source, given the result of a forensic test on the samples. Two possibilities are considered: the null hypothesis (H0) that they are from different sources (H0) and the alternative hypothesis (H1) that two samples are from the same source. The forensic test result may be summarized as match declared (M) or no match declared (O).

There are two necessary characterizations of a method’s accuracy: Sensitivity (abbreviated SEN) and False Positive Rate (FPR).

Sensitivity is defined as the probability that the method declares a match between two samples when they are known to be from the same source (drawn from an appropriate population), that is, SEN = P(M|H1). For example, a value SEN = 0.95 would indicate that two samples from the same source will be declared as a match 95 percent of the time. In the statistics literature, SEN is sometimes also called the “true positive rate,” “TPR,” or “recall rate.” 393

False positive rate (abbreviated FPR) is defined as the probability that the method declares a match between two samples that are from different sources (again in an appropriate population), that is, FPR = P(M|H0). For example, a value FPR = 0.01 would indicate that two samples from different sources will be (mistakenly) called as a match 1 percent of the time. 394 Methods with a high FPR are scientifically unreliable for making important

393 The term false negative rate is sometimes used for the complement of SEN, that is, FNR = 1 – SEN.

394 Statisticians may refer to a method’s specificity (SPC) instead of its false positive rate (FPR). The two are related by the formula FPR = 1 – SPC. In the example given, FPR = 0.01 (1 percent) and SPC = 0.99 (99 percent).

★ 151 ★
judgments in court about the source of a sample. To be considered reliable, the FPR should certainly be less than 5 percent and it may be appropriate that it be considerably lower, depending on the intended application.

The results of a given empirical study can be summarized by four values: the number of occurrences in the study of true positives (TP), false positives (FP), false negatives (FN), and true negatives (TN). (The matrix of these values is, perhaps oddly, referred to as the “confusion matrix.”)

<table>
<thead>
<tr>
<th>Test Result</th>
<th>Match</th>
<th>No Match</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1: Truly from same source</td>
<td>TP</td>
<td>FN</td>
</tr>
<tr>
<td>H0: Truly from different sources</td>
<td>FP</td>
<td>TN</td>
</tr>
</tbody>
</table>

In this standard-but-confusing terminology, “true” and “false” refer to agreement or disagreement with the ground truth (either H0 or H1), while “positive” and “negative” refer to the test results (that is, results M and O, respectively).

A widely-used estimate, called the maximum likelihood estimate, of SEN is given by TP/(TP+FN), the fraction of events with ground truth H1 (same source) that are correctly declared as M (match). The maximum likelihood estimate of FPR is correspondingly FP/(FP+TN), the fraction events with ground truth H0 (different source) that are mistakenly declared as M (match).

Since the false positive rate will often be the mathematically determining factor in the method’s probative value in a particular case (discussion below), it is particularly important that FPR be well measured empirically.

In addition, tests with very low sensitivity should be viewed with suspicion because rare positive test results may be matched or outweighed by the occurrence of false positive results.395

Confidence Intervals

As discussed in the main text, to be valid, empirical measurements of SEN and FPR must be based on large collections of known and representative samples from each relevant population, so as to reflect how often a given feature or combination of features occurs. (Other requirements for validity are also discussed in the main text.)

Since empirical measurements are based on a limited number of samples, SEN and FPR cannot be measured exactly, but only estimated. Because of the finite sample sizes, the maximum likelihood estimates thus do not tell the whole story. Rather, it is necessary and appropriate to quote confidence bounds within which SEN, and FPR, are highly likely to lie.

395 The argument in favor of a test that “this test succeeds only occasionally, but in this case it did succeed” is thus a fallacious one
Because one should be primarily concerned about overestimating SEN or underestimating FPR, it is appropriate to use a one-sided confidence bound. By convention, a confidence level of 95 percent is most widely used—meaning that there is a 5 percent chance the true value exceeds the bound. Upper 95 percent one-sided confidence bounds should thus be used for assessing the error rates and the associated quantities that characterize forensic feature matching methods. (The use of lower values may rightly be viewed with suspicion as an attempt at obfuscation.)

The confidence bound for proportions depends on the sample size in the empirical study. When the sample size is small, the estimates may be far from the true value. For example, if an empirical study found no false positives in 25 individual tests, there is still a reasonable chance (at least 5 percent) that the true error rate might be as high as roughly 1 in 9.

For technical reasons, there is no single, universally agreed method for calculating these confidence intervals (a problem known as the “binomial proportion confidence interval”). However, the several widely used methods give very similar results, and should all be considered acceptable: the Clopper-Pearson/Exact Binomial method, the Wilson Score interval, the Agresti-Coull (adjusted Wald) interval, and the Jeffreys interval. For example, if a study finds zero false positives in 100 tries, the four methods mentioned give, respectively, the values 0.030, 0.026, 0.032, and 0.019 for the upper 95 percent confidence bound. From a scientific standpoint, any of these might appropriately be reported to a jury in the context “the false positive rate might be as high as.” (In this report, we used the Clopper-Pearson/Exact Binomial method.)

Calculating Results for Conclusive Tests

For many forensic tests, examiners may reach a conclusion (e.g., match or no match) or declare that the test is inconclusive. SEN and FPR can thus be calculated based on the conclusive examinations or on all examinations. While both rates are of interest, from a scientific standpoint, the former rate should be used for reporting FPR to a jury. This is appropriate because evidence used against a defendant will typically be based on conclusive, rather than inconclusive, examinations. To illustrate the point, consider an extreme case in which a method had been tested 1000 times and found to yield 990 inconclusive results, 10 false positives, and no correct results. It would be misleading to report that the false positive rate was 1 percent (10/1000 examinations). Rather, one should report that 100 percent of the conclusive results were false positives (10/10 examinations).

Bayesian Analysis

In this appendix, we have focused on the Sensitivity and False Positives rates (SEN = P(M|H1) and FPR = P(M|H0)). The quantity of most interest in a criminal trial is P(H1|M), that is, “the probability that the samples are from the same source given that a match has been declared.” This quantity is often termed the positive predictive value (PPV) of the test.

397 For example, see: epitools.ausvet.com.au/content.php?page=CIProportion.
The calculation of PPV depends on two quantities: the “Bayes factor” \(BF = \frac{SEN}{FPR} \) and a second quantity called the “prior odds ratio” (POR). This latter quantity is defined mathematically as \(POR = \frac{P(H0)}{P(H1)} \), where \(P(H0) \) and \(P(H1) \) are the prior (i.e., before doing the test) probabilities of the hypotheses \(H0 \) and \(H1 \).\(^{398}\) The formula for PPV in terms of BF and POR is: \(PPV = \frac{BF}{BF + POR} \), a formula that follows from the statistical principle known as Bayes Theorem.\(^{399}\)

Bayes Theorem offers a mathematical way to combine the test result with independent information—such as (1) one’s prior probability that two samples came from the same source and (2) the number of samples searched. Some Bayesian statisticians would choose \(POR = 1 \) in the case of a match to single sample (implying that it is equally likely \textit{a priori} that the samples came from the same source as from different sources) and \(POR = 100,000 \) for a match identified by comparing a sample to a database containing 100,000 samples. Others would set \(POR = \frac{1-p}{p} \), where \(p \) is the \textit{a priori} probability of same-source identity in the relevant population, given the other facts of the case.

The Bayesian approach is mathematically elegant. However, it poses challenges for use in courts: (1) different people may hold very different beliefs about POR and (2) many jurors may not understand how beliefs about POR affect the mathematical calculation of PPV. (Moreover, as noted previously, the empirical estimates of SEN and FPR have uncertainty, so the estimated \(BF = \frac{SEN}{FPR} \) also has uncertainty.)

Some commentators therefore favor simply reporting the empirically measured quantities (the sensitivity, the false positive rate of the test, and the probability of a false positive match given the number of samples searched against) and allowing a jury to incorporate them into their own intuitive Bayesian judgments. (For example, “\textit{Yes, the test has a false positive rate of only 1 in 100, but two witnesses place the defendant 1000 miles from the crime scene, so the test result was probably one of those 1 in 100 false positives.}”)

\(^{398}\) That is, if \(p \) is the \textit{a priori} probability of same-source identity in the population under examination then \(POR = \frac{1-p}{p} \).

\(^{399}\) In the main text, the phrase “appropriately correct for the size of the pool that was searched in identifying a suspect” refers to the use of this formula with an appropriate value for POR.
Appendix B. Additional Experts Providing Input

PCAST sought input from a diverse group of additional experts and stakeholders. PCAST expresses its gratitude to those listed here who shared their expertise. They did not have the opportunity to review drafts of the report, and their willingness to engage with PCAST on specific points does not imply endorsement of the views expressed therein. Responsibility for the opinions, findings, and recommendations in this report and for any errors of fact or interpretation rests solely with PCAST.

Richard Alpert
Assistant Criminal District Attorney Tarrant County Criminal District Attorney’s Office

Peter Bush
Research Instructor
Director of the South Campus Instrument Center
University at Buffalo School of Dental Medicine

Kareem Belt
Forensic Policy Analyst
Innocence Project

John Butler
Special Assistant to the Director for Forensic Science
Special Programs Office
National Institute of Standards and Technology

William Bodziak
Consultant
Bodziak Forensics

Arturo Casadevall
Professor
Department of Microbiology & Immunology and Department of Medicine
Albert Einstein College of Medicine

John Buckleton
Principal Scientist
Institute of Environment and Scientific Research
New Zealand

Alicia Carriquiry
Distinguished Professor at Iowa State and Director, Center for Statistics and Applications in Forensic Evidence
Iowa State University

Bruce Budowle
Professor, Executive Director of Institute of Applied Genetics
University of North Texas Health Science Center

Richard Cavanagh
Director
Special Programs Office
National Institute of Standards and Technology

Mary A. Bush
Associate Professor
Department of Restorative Dentistry
University at Buffalo School of Dental Medicine

Eleanor Celeste
Policy Analyst
Medical and Forensic Sciences
Office of Science and Technology Policy
Christophe Champod
Professor of Law, Criminal Science and Public Administration
University of Lausanne

Itiel Dror
Senior Cognitive Neuroscience Researcher
University College London

Sarah Chu
Senior Forensic Policy Advocate
Innocence Project

Meredith Drosback
Assistant Director
Education and Physical Sciences
Office Of Science and Technology Policy

Simon A. Cole
Professor of Criminology, Law and Society
School of Social Ecology
University of California Irvine

Kimberly Edwards
Physical Scientist
Forensic Examiner
Federal Bureau of Investigation Laboratory

Kelsey Cook
Program Director
Chemical Measurement and Imaging
National Science Foundation

Ian Evett
Forensic Statistician
Principal Forensic Services

Patricia Cummings
Special Fields Bureau Chief
Dallas County District Attorney’s Office

Chris Fabricant
Director, Strategic Litigation
Innocence Project

Christopher Czyryca
President
Collaborative Testing Services

Kenneth Feinberg
Steven and Maureen Klinsky Visiting Professor of Practice for Leadership and Progress
Harvard Law School

Dana Delger
Staff Attorney
Innocence Project

Rebecca Ferrell
Program Director
Biological Anthropology
National Science Foundation

Shari Diamond
Howard J. Trienens Professor of Law
Professor of Psychology
Pritzker School of Law
Northwestern University

Jennifer Friedman
Forensic Science Coordinator
Los Angeles County Public Defender
Lynn Garcia
General Counsel
Texas Forensic Science Commission

Daniel Garner
Chief Executive Officer and President
Houston Forensic Science Center

Constantine A. Gatsonis
Henry Ledyard Goddard University Professor of Biostatistics
Chair of Biostatistics
Director of Center for Statistical Sciences
Brown University

Eric Gilkerson
Forensic Examiner
Federal Bureau of Investigation Laboratory

Brandon Giroux
President
Giroux Forensics, L.L.C.
President
Forensic Assurance

Catherine Grgicak
Assistant Professor
Anatomy and Neurobiology
Boston University School of Medicine

Austin Hicklin
Fellow
Noblis

Cindy Homer
Forensic Scientist
Maine State Police Crime Lab

Alice Isenberg
Deputy Assistant Director
Federal Bureau of Investigation Laboratory

Matt Johnson
Senior Forensic Specialist
Orange County Sheriff’s Department

Jonathan Koehler
Beatrice Kuhn Professor of Law
Pritzker School of Law
Northwestern University

Glenn Langenburg
Forensic Science Supervisor
Minnesota Bureau of Criminal Apprehension

Gerald LaPorte
Director
Office of Investigative and Forensic Sciences
National Institute of Justice

Julia Leighton
General Counsel
Public Defender Service
District of Columbia

Alan I. Leshner
Chief Executive Officer, Emeritus
American Association for the Advancement of Science and Executive Publisher of the journal Science

Ryan Lilien
Chief Science Officer
Cadre Research Labs
Rodney Schenck
Defense Forensic Science Center
The Defense Forensics and Biometric Agency

David Senn
Director
Center for Education and Research in Forensics
and the Southwest Symposium on Forensic Dentistry
University of Texas Health Science Center at San Antonio

Stephen Shaw
Trace Examiner
Federal Bureau of Investigation Laboratory

Andrew Smith
Supervisor Firearm/ Toolmark Unit
San Francisco Police Department

Erich Smith
Physical Scientist
Firearms-Toolmarks Unit
Federal Bureau of Investigation Laboratory

Tasha Smith
Firearm and Tool Mark Unit
Criminalistics Laboratory
San Francisco Police Department

Jeffrey Snipes
Associate Professor
Criminal Justice Studies
San Francisco State University

Jill Spriggs
Laboratory Director
Sacramento County District Attorney’s Office

Harry Swofford
Chief, Latent Print Branch
Defense Forensics Science Center
The Defense Forensics and Biometric Agency

Robert Thompson
Program Manager Forensic Data Systems
Law Enforcement Standards Office
National Institute of Standards and Technology

William Thompson
Professor of Criminology, Law, and Society and Psychology & Social Behavior
Law School of Social Ecology
University of California, Irvine

Rick Tontarski
Chief Scientist
Defense Forensic Science Center

Jeremy Triplett
Laboratory Supervisor
Kentucky State Police Central Forensic Laboratory

Richard Vorder Bruegge
Senior Photographic Technologist
Federal Bureau of Investigation

Victor Weedn
Chair of Forensic Sciences
Department of Forensic Sciences
George Washington University

Robert Wood
Associate Professor and Head
Department of Dental Oncology
Dentistry, Ocular and Maxillofacial Prosthetics
Princess Margaret Cancer Centre
University of Toronto
Xiaoyu Alan Zheng
Mechanical Engineer
National Institute of Standards and Technology
President’s Council of Advisors on Science and Technology (PCAST)

www.whitehouse.gov/ostp/pcast
November 16, 2016

The President of the United States
The White House
1600 Pennsylvania Avenue, NW
Washington, DC 20500

Dear President Obama:

On behalf of the National District Attorneys Association (NDAA), the nation’s largest prosecutor organization, representing 2,500 elected and appointed District Attorneys across the United States, as well as 40,000 assistant district attorneys, I write to you today regarding the Report to the President-Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods (“the Report’). The NDAA takes issue with, and has substantial concern about, the logic of the report and the manner in which it portrays several forensic disciplines.

First and foremost amongst NDAA’s concerns is the pervasive bias and lack of independence apparent throughout the report. The report repeatedly contends that studies used to determine and/or establish the scientific validity of feature comparison disciplines must be conducted by entities independent of those who may have some stake in the outcome. The composition of the PCAST, however, violates this very principle; the PCAST membership included several who are far from “independent” and who have a direct “stake in the outcome.” A significant example is Eric Lander, Co-Chair of PCAST, and Chair of the working group, who is also a Member of the Board of Directors of the Innocence Project, an organization that has argued for years that the forensic feature comparison disciplines have failed to demonstrate their scientific validity and are, in part, responsible for numerous wrongful convictions. There is no evidence the scientific basis for forensic feature comparisons are responsible for wrongful convictions.

Second, the working group (and PCAST at large) included no forensic scientists. Rather, it consisted of six PCAST members (none of whom have forensic laboratory experience), ten judges, two law school professors, and two college professors. In addition, the report does not include a bibliography/appendix of the literature upon which it relied on in support of its findings and conclusions. Instead, the report simply offers, in Appendix B, a list of (apparently hand-picked) “Additional Experts Providing Input.” It is true that PCAST solicited literature references from various forensic organizations. The Report, however, does not indicate which of these the PCAST relied upon, considered or even read.
Third, without a single citation to scientific authority, the PCAST Report simply declares that forensic feature comparison methods belong to the scientific field of “metrology (including statistics).” Metrology is the study of scientific measurement. Crime labs use forensic metrology for determining the measurement of blood alcohol content, quantitation of drugs in a toxicology sample, weight of a controlled substance and the barrel length of a firearm. In light of this contention, it is inexplicable that the PCAST’s working group included no metrologists.

In their current form, the feature comparison methods considered in the Report clearly do not fall under the field of metrology. Labeling them as such was a transparently strategic attempt to bring these methods under the ambit of Daubert v. Merrell Dow Pharmaceuticals, Inc. 509 U.S. 579, (1993), a requirement that “in a case involving scientific evidence, evidentiary reliability will be based on scientific validity.” The Report’s self-professed primary purpose was to define what scientific validity means.

According to PCAST, (again without citation to any literature or authority), scientific validity for subjective feature comparison methods can be established only through numerous, properly constructed, independent black box studies with a variety of samples from a diverse population of features. The report then posits that there is an insufficient number of these properly designed black box studies that comply with PCAST’s unilaterally imposed criteria to establish the scientific validity of several of the disciplines discussed. Based on that claim, the report then not-so-subtly urged that courts consider excluding results from these disciplines, while giving mere lip service to the notion that admissibility remains a question for courts, not PCAST, to determine.

By wrongly labeling the forensic feature comparison disciplines as belonging to the field of metrology, the report conveniently overlooks the ancient debate over precisely what constitutes “science.” The answer to this question depends fundamentally upon which philosopher one finds most compelling and which definition one finds most persuasive. (Indeed, the debate over exactly what constitutes “science” has been ongoing since the time of Aristotle and is far from settled.) Under many definitions, the feature comparison methods that are the subject of the report certainly incorporate aspects of science. These methods however, also independently constitute “technical” and “specialized knowledge” under Federal Rule of Evidence 702. Significantly, “technical” and “specialized knowledge” are not fields of knowledge for which Daubert requires scientific validity. See Daubert, fn. 8 (“Our discussion is limited here to the scientific context because that is the nature of the expertise offered here”; and fn. 9, “In a case involving scientific evidence, evidentiary reliability will be based upon scientific validity.”) (Emphasis original). In Kumho Tire v. Carmichael, 526 U.S. 137, 149, (1999), the Supreme Court recognized that distinction, holding that where the “factual basis, data, principles, methods (of technical or specialized knowledge) or their application are called sufficiently into question...the trial judge must determine whether the testimony has “a reliable basis in the knowledge and experience of [the relevant] discipline.”
Further illustrating the internal contradiction is the inconvenient truth that the same working group critics who have long argued that the feature comparison methods are not science now insist that they are in fact science. This change of heart, however, appears to have been driven solely by the strategic need to shoehorn these disciplines into Daubert’s holding that, in the case of scientific evidence, legal reliability is synonymous with scientific validity. Having completed this maneuver, the Report then imposes its own outcome-determinative definition of scientific validity on each canvassed method. Finally, the Report declares each one invalid due to an insufficient number of properly qualified black box studies that meet PCAST’s newly-minted set of criteria. This is a transparent effort to persuade courts that they should exclude this technical or specialized evidence because it is not scientifically valid as required by Daubert. As elucidated by Kumho Tire, however, Daubert does not require scientific validity in the case of technical or specialized evidence, even if it incorporates scientific aspects.

Complex Mixture DNA

In assessing the scientific validity of DNA analysis of single-source and simple mixture samples, the Report determines that as an objective method, each of the steps has been found to be “repeatable, reproducible and accurate.” Thus, the authors correctly conclude that analyses of single –source and simple mixture samples of two individuals are an objective scientific method whose foundational validity has been properly and irrefutably established.

Moving onto the analysis of “complex mixture samples,” the Report contrasts the analysis of such samples with the analyses of single-source and simple mixtures by suggesting that complex mixture analysis is not based on “precisely defined laboratory protocols” as single-source and simple mixture analyses are. Although it is certainly true that DNA interpretation rests solidly on a laboratory’s protocols developed after conducting internal validation studies, such “precisely defined protocols” are by no means limited to single-source and simple mixture samples. Furthermore, non-probabilistic genotyping methods of DNA interpretation – whether of single source, simple mixture, or complex mixtures – requires some level of interpretation by a trained, well-qualified DNA analyst.

The Report challenges the DNA analysis of complex mixture samples and erroneously concludes that the Combined Probability of Inclusion (CPI) approach to complex mixture analysis is an inadequately specified, subjective method that is not foundationally valid.

From the outset, the Report paints with an overly broad brush in defining a “complex mixture sample.” The Report defines a complex mixture as one with more than two contributors and states in entirely conclusory fashion that this type of mixture is inherently difficult to interpret. In defining complex mixtures so broadly, the Report fails to make a critical distinction between complex mixtures that have a discernable ratio of the various contributors – and therefore can be validly interpreted based on laboratory validation studies and standard operating protocols using a random match probability statistic, a likelihood ratio, or a CPI approach -- and those that do not have such discernable ratios.
DNA interpretations of complex mixtures with discernable contributor ratios are carried out daily by laboratories across the United States reporting accurate and reliable results. The Report ignores the fundamental difference between this type of complex mixture and those in which a greater-than-two-person mixture contains undiscernible ratios of contributors. Complex mixtures in which contributor ratios are not distinct demonstrate phenomena such as allele stacking or allelic dropout. Laboratories can overcome such interpretation challenges with rigorous internal laboratory validation studies, well-defined standard operating procedures, and rigorous training of the DNA analysts. The critical issue is not (or should not be) whether a particular method such as CPI is not scientifically valid (as it has been demonstrated to be valid when applied correctly) but whether that scientifically valid method has been applied correctly to the particular sample being analyzed.

As evidence of the putative unreliability of the CPI approach, the Report devotes significant discussion to what it describes as “systemic” problems with the subjective analysis of complex DNA mixtures. The Report cites purported failings of analyses conducted in Texas in 2015. The Report unfairly attributes the failings of the Texas laboratories -- in which dramatic shifts in statistics resulted from the laboratories changing the way in which they calculated the CPI statistics -- on the CPI method itself. The Report broadly asserts that it was not until 2015 that attorneys learned for the first time “the extent to which DNA mixture analysis involved subjective interpretation” and that problems arose with CPI because existing guidelines did not clearly, adequately, or correctly specify the proper use or limitation of the approach. To cast doubt on the method itself based on an individual laboratory’s misapplication of the method is misguided at best or disingenuous at worst. Rather than spending pages detailing the occurrences in the Texas laboratories and concluding that the problem was “systemic” while dismissing those who reliably interpret complex DNA mixtures, the Report should have relied upon articles published in peer-reviewed journals by experts in the field describing the proper use and limitations of the CPI method to interpret complex DNA mixture profiles.

Four publications describe the proper, scientifically valid use of CPI.

Genetics in 2016 that provides a detailed, specific set of rules for the use of CPI which the PCAST Report erroneously claims is lacking. The purpose of the article was to assist forensic laboratories that use CPI by providing a formal protocol for the proper use of CPI. The forensic DNA community has met the criteria set out by the PCAST Report by providing standardized protocols and methodology for the proper use of the CPI in complex mixture analysis.

Nonetheless, ignoring published scientific literature, the Report, inexplicably concludes that the interpretation of complex DNA mixtures with the CPI statistic is inappropriately subjective and “clearly not foundationally valid.” To make such a sweeping claim in the face of publications authored by experts in the field seriously undermines confidence in the Report’s objectivity and reliability.

Latent Print Discipline

The report concludes that the use of latent fingerprint analysis satisfies the requirements of scientific reliability. The Report goes on to suggest that judges insist that jurors be apprised of error rates, which are the subject of significant scientific/technical disagreement. This is an example of the Report’s confusion of the roles of experts, counsel, the judge, and the jury. Error rate issue is an issue of fact -- for experts to testify about and juries to resolve -- not one of law.

In addition, although NDAA concurs with the Report’s conclusion that latent prints are a scientifically reliable discipline, that concurrence is based on a great deal of scientific and technical validation that goes well beyond the two black box studies cited in the Report. Also indicative of the internal incoherence of the Report’s methodology is its failure to apply its own criteria for evaluation of black box studies to the studies cited on latent fingerprint analysis. That is, having set out criteria for the assessment of black box studies (and having artificially and unnecessarily limited the scope of potential validation for latent fingerprint analysis to black box studies), the Report inexplicably fails to apply those criteria to the black box studies it cites in support of the scientific reliability of latent fingerprint analysis.

Firearms Analysis

The science of tool mark identification, specifically firearms, is based on the premise that a tool mark can be individualized to the specific tool that produced it. Firearms identification involves the microscopic examination and comparison of cartridge casings and expended bullets to each other, and to test fires produced from known firearms. The unique features of each firearm, as designed by the firearm manufacturer, are transferred to the cartridge case and bullet whenever a weapon is fired. The cartridge case or shell is impressed with marks from contact with the metal surfaces of the gun’s firing and loading mechanisms, including the firing pin, breech face, ejector, extractor and magazine. In addition to marks left on the cartridge casing,

as a fired bullet travels down the barrel of a gun, it will pick up impressed and striated tool marks (lands and grooves) that are generated by the working surface of the rifled bore of the barrel.

The PCAST findings with respect to firearms are especially puzzling as the Association of Firearm and Tool mark Examiners (AFTE) provided to the PCAST a comprehensive list of over 40 peer-reviewed published studies supporting the foundational aspects of the discipline and answering questions relating to other aspects of the discipline. This information is available at https://afte.org/resources/wggun-ark. This research includes a significant number of comprehensive experimental models involving close to a thousand examiners from the US and across the globe. The varied experimental models included numerous “consecutively manufactured barrel” tests, in which manufacturers provided a series of consecutively manufactured firearm barrels, which would be expected to be virtually identical. Trained examiners were asked to examine unknown fired bullets to determine whether they could correctly identify those bullets as having been fired from the barrel of a particular firearm. Other tests involved the effect of consecutive firing of firearms to determine how the wear on barrels and breech faces would affect the identification of fired bullets and cartridge casings. Still other tests involved microscopic studies of the reproducibility of tool marks on high velocity bullets fired through a single machine gun barrel. Various tests used double-blind procedures and studied false-positive and false-negative error rates and compared automated analyses systems to those of trained human examiners. The studies demonstrated that unique features of each firearm are transferred to cartridge casings and bullets and that trained examiners are able to correctly link related tool marks to the tool, i.e., the firearm that produced it with a high degree of accuracy.

PCAST, however, is critical of these studies. PCAST arbitrarily defined the acceptable parameters of validation studies and determined that the types cited by AFTE failed to meet those parameters. In comments regarding several cited studies, PCAST implies that these particular types of firearm validation studies are not challenging and the participants can determine the correct response by a process of elimination. Yet the PCAST members are neither forensic firearm scientists performing casework nor did they participate as examiners in these validation studies. PCAST unilaterally dismisses all work that does not comport with its arbitrary, singular experimental design. Years of research conducted prior to the PCAST report have established the scientific foundational validity of firearm/tool mark analysis.

Forensic Odontology

Forensic dentists are highly-trained medical professionals and their methods employ well-documented and well-understood medical and forensic techniques. Forensic dentists undergo standard medical dental training during which they take the same courses as medical students in pharmacology, physiology, histology, and anatomy of the oral and facial structure.
By virtue of their experience reading x-rays and performing surgeries, forensic dentists are experts in comparing dentitions, pattern, and are well-versed in the injury and healing properties of human skin.

Forensic dentists perform bite mark evidence collection through the use of highly specialized photography and harvest injured skin from deceased victims. They analyze bite marks using very specific criteria and highly specialized computer programs and tools.

Best practices for comparisons include blinded suspect sample collection and a “lineup” of potential suspects. Board certified forensic odontologists undergo a rigorous training and examination process by the American Board of Forensic Odontology.

Studies cited by the PCAST Report in support of its rejection of forensic odontology have been thoroughly discredited in court. For example, both the cadaver studies and 2-D and 3-D studies by Mary and Peter Bush were poorly designed and executed and as a result, did not reliably demonstrate anything. The AAFS study was similarly flawed. The authors admit that the small number of participants and mid-study rule changes, among other problems, meant the study proved only the obvious fact that the best possible evidence should be used when conducting bite mark analysis and comparison.

Forensic odontology is an important tool, for both prosecution and defense, especially in child abuse cases. These cases commonly involve a limited number of people who have access to the child and comparisons between this “closed population” of suspects can often reliably exclude all but one suspect who may be included as a possible perpetrator based on specific similarities between the suspect’s dentition and the bite mark injury. Judges, juries, potential defendants and victims all need this valuable tool in the pursuit of justice. PCAST’s study of historic cases in which convictions were vacated do not address vast improvements in forensic odontology and are not relevant to forensic practices today.

Closing

Finally, it should be noted that the Report applies only selectively its assertion that numerous peer reviewed and published studies are required. In several instances (for example, cognitive bias) the Report relies upon a single study on an isolated topic that has not been replicated by other researchers and generalizes the single study’s findings to all analogous forensic disciplines. The Report does this despite its requirement that proponents of a particular discipline support their claims with numerous peer-reviewed studies. Cherry-picking studies that report findings that support the report’s positions, but that fail to satisfy the report’s own criteria for feature comparison methods, further exposes the Report’s biases and, in doing so undermines its credibility.

Throughout its report, PCAST announces, by fiat, certain broad and sweeping definitions and sets of criteria without a single attribution to extant scientific authority in support of these assertions. Among these are its definitions of scientific validity (for both objective and
subjective methods); validity as applied; and the assertion that the only means by which these scientific concepts can be established is via multi-part tests, apparently created adhoc by the PCAST working group.

In its report, PCAST provides three types of evidence that it argues undermines, “from a scientific standpoint,” “the continuing validity of conclusions that were not based on appropriate empirical evidence.” These are Innocence Project exonerations; the 2009 NRC Report; and “the scientific review in this report by PCAST, the leading scientific advisory body established by the Executive Branch, finding that some forensic feature-comparison methods lack foundational validity.”

PCAST’s attempt to bootstrap its own qualifications as justification for the exclusion of feature comparison evidence, and its attempt to appeal to the reader’s deference to its own political authority, is the height of irony (and hypocrisy) for a group that criticizes feature comparison methods because of their reliance on skill and experience rather than upon foundational authorities.

In addition, while criticizing the feature comparison disciplines for failing to rely on adequate empirical evidence to establish their foundational validity, PCAST, ironically, feels no need to rely upon any foundational scientific material to support its own numerous scientific edicts. Instead, PCAST bases its assertions on “the ipse dixit” of its own alleged expertise in this field. Setting aside that PCAST has no forensic expertise per se, the ipse dixit of the expert is not a sufficient basis upon which to admit scientific testimony in a courtroom. Likewise, it offers no reason to credit the assertions made in its Report.

In the end, the report offers an appeal to its own authority as a justification for courts to rely on its recommendations to exclude feature comparison evidence. Not only is this dangerous but it is well beyond the Report’s purview. Assertions by the Attorney General and the FBI Director that they will not heed the report’s recommendations constitute a powerful repudiation of the methods and conclusions of the PCAST process. Experience shows these disciplines offer reliable and powerful evidence in a court of law. It is therefore entirely inappropriate for the report to suggest otherwise to this country’s courts.

To address legitimate questions surrounding forensic science, NDAA supports establishment of an Office of Forensic Science within the Department of Justice as recommended by Senators Cornyn and Leahy in 2014 in the Criminal Justice and Forensic Science Reform Act of 2014. One of the Act’s recommendations is a Comprehensive Research Strategy and Agenda for fostering and improving peer-reviewed scientific research relating to the forensic science disciplines, including research addressing validity, reliability, and accuracy in the forensic science disciplines. It is our understanding that PCAST has been tasked with generating a research strategy within the Office of Science and Technology Policy (OSTP) under your Office. An Office of Forensic Science, in our opinion, should be charged with these tasks in order to help facilitate all the partners collaboratively within the forensic community and the Department of Justice. In our view, the Department of Justice is better suited for this task than the OSTP, due to the
broad range of subjects it is asked to study such as climate change, antibiotic resistance and education. We support peer-reviewed scientific research relating to the forensic science disciplines to continue to improve validity, reliability, and accuracy.

Sincerely,

Michael A. Ramos
President
National District Attorneys Association
Accepted Manuscript

Title: Internal validation of STRmix™ – A multi laboratory response to PCAST

Authors: Jo-Anne Bright, Rebecca Richards, Maarten Kruijver, Hannah Kelly, Catherine McGovern, Alan Magee, Andrew McWhorter, Anne Ciecko, Brian Peck, Chase Baumgartner, Christina Buettner, Scott McWilliams, Claire McKenna, Colin Gallacher, Ben Mallinder, Darren Wright, Deven Johnson, Dorothy Catella, Eugene Lien, Craig O’Connor, George Duncan, Jason Bundy, Jillian Echard, John Lowe, Joshua Stewart, Kathleen Corrado, Sheila Gentile, Marla Kaplan, Michelle Hassler, Naomi McDonald, Paul Hulme, Rachel H. Oefelein, Shawn Montpetit, Melissa Strong, Sarah Noël, Simon Malsom, Steven Myers, Susan Welti, Tammya Moretti, Teresa McMahon, Thomas Grill, Tim Kalafut, MaryMargaret Greer-Ritzheimer, Vickie Beamer, Duncan A. Taylor, John S. Buckleton

PII: S1872-4973(18)30010-3
DOI: https://doi.org/10.1016/j.fsigen.2018.01.003
Reference: FSIGEN 1834

To appear in: Forensic Science International: Genetics

Received date: 20-8-2017
Revised date: 29-11-2017
Accepted date: 6-1-2018

Please cite this article as: Jo-Anne Bright, Rebecca Richards, Maarten Kruijver, Hannah Kelly, Catherine McGovern, Alan Magee, Andrew McWhorter, Anne Ciecko, Brian Peck, Chase Baumgartner, Christina Buettner, Scott McWilliams, Claire McKenna, Colin Gallacher, Ben Mallinder, Darren Wright, Deven Johnson, Dorothy Catella, Eugene Lien, Craig O’Connor, George Duncan, Jason Bundy, Jillian Echard, John Lowe, Joshua Stewart, Kathleen Corrado, Sheila Gentile, Marla Kaplan, Michelle Hassler, Naomi McDonald, Paul Hulme, Rachel H. Oefelein, Shawn Montpetit, Melissa Strong, Sarah Noël, Simon Malsom, Steven Myers, Susan Welti, Tammya Moretti, Teresa McMahon, Thomas Grill, Tim Kalafut, MaryMargaret Greer-Ritzheimer, Vickie Beamer, Duncan A. Taylor, John S. Buckleton, Internal validation of STRmix™ – A multi laboratory response to PCAST. Forensic Science International: Genetics https://doi.org/10.1016/j.fsigen.2018.01.003
Internal validation of STRmix™ - A multi laboratory response to PCAST

Jo-Anne Bright¹, Rebecca Richards¹, Maarten Kruijver¹, Hannah Kelly¹, Catherine McGovern¹, Alan Magee², Andrew McWhorter³, Anne Ciecko⁴, Brian Peck⁵, Chase Baumgartner⁶, Christina Buettner⁷, Scott McWilliams⁷, Claire McKenna⁸, Colin Gallacher⁹, Ben Mallinder⁹, Darren Wright¹⁰, Deven Johnson¹¹, Dorothy Catella¹², Eugene Lien¹³, Craig O’Connor¹³, George Duncan¹⁴, Jason Bundy¹⁵, Jillian Echard¹⁶, John Lowe¹⁷, Joshua Steward¹⁸, Kathleen Corrado¹⁹, Sheila Gentile¹⁹, Marla Kaplan²⁰, Michelle Hassler²¹, Naomi McDonald²², Paul Hulme²³, Rachel H. Oefelein²⁴, Shawn Montpetit²⁵, Melissa Strong²⁵, Sarah Noël²⁶, Simon Malsom²⁷, Steven Myers²⁸, Susan Welti²⁹, Tammy Moretti³⁰, Teresa McMahon³¹, Thomas Grill³², Tim Kalafut³³, Mary Margaret Greer-Ritzheimer³⁴, Vickie Beamer³⁵, Duncan A. Taylor³⁶,³⁷, John S. Buckleton³,³⁸

¹ Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland, 1142 New Zealand
² Forensic Science Ireland
³ Texas Department of Public Safety, Houston Laboratory
⁴ Midwest Regional Forensic Laboratory, Andover, Minnesota
⁵ Centre of Forensic Sciences, Toronto, Canada
⁶ Texas Department of Public Safety, Austin Laboratory
⁷ Wyoming State Crime Laboratory
⁸ Austin Police Department, City of Austin, Texas
⁹ Scottish Police Authority (SPA)
¹⁰ Idaho State Police Forensic Services
¹¹ Sacramento District Attorney’s Office Laboratory of Forensic Services, California
¹² Oakland County Sheriff’s Office, Michigan
¹³ New York City Office of Chief Medical Examiner (OCME)
¹⁴ Broward Sheriff’s Office Crime Laboratory, Florida
¹⁵ Florida Department of Law Enforcement
¹⁶ Connecticut DESPP Division of Scientific Services
¹⁷ Key Forensic Services Ltd., UK, Warrington Laboratory
¹⁸ Texas Department of Public Safety, Corpus Christi Laboratory
¹⁹ Onondaga County Center for Forensic Sciences, New York
²⁰ Oregon State Police Laboratory (OSP)
²¹ San Diego County Sheriff’s Regional Crime Laboratory
²² Texas Department of Public Safety, Lubbock Laboratory
²³ Cellmark Forensic Services, UK
²⁴ DNA Labs International
²⁵ San Diego Police Department Crime Laboratory, California
containing "ratio and high contributor number mixtures. Included amongst these was the interpretation of complex DNA mixtures. In 2016, the

Introduction

Highlights

- The analysis of 2825 mixtures from 31 laboratories with the probabilistic genotyping software STRmix™ is reported.
- Less discriminatory LRs occur both for donors and non-donors at low template (for the donor in question) and at high contributor number.
- We were unable to isolate an effect of allelic overlap. Any apparent effect appears to be largely confounded with increased contributor number.

Introduction

In 2016, the President's Council of Advisors on Science and Technology (PCAST) issued a report [1] and subsequently an addendum [2]. This report discussed a number of forensic disciplines. Included amongst these was the interpretation of complex DNA mixtures. PCAST defined a complex mixture as any profile with three or more donors. The report noted perceived limits to the proof of validity of the use of probabilistic genotyping (PG) in some situations as of September 2016. In particular they highlighted gaps regarding high ratio and high contributor number mixtures. PCAST considered validity proven for mixtures containing “three contributors where the person of interest comprises at least 20% of the sample.” [2]. They noted that the “few studies that have explored 4- or 5-person mixtures...
often involve mixtures that are derived from only a few sets of people (in some cases, only one).” [2]. They call for the expansion of empirical studies, testing the validity and reliability of PG methods across a broader relevant range of profile types.

PCAST limited themselves for proof of validity to empirical studies published in the peer reviewed literature. There are a number of published reports describing the validation of various probabilistic genotyping software by the developers. These include the New York City Office of Chief Medical Examiner’s FST Tool [3], TrueAllele® [4], and STRmix™ [5]. More recently the validation of GenoProof Mixture 3 [6] and Kongoh [7] has been reported.

PCAST also perceived there was a gap in “the need for clarity about the scientific standards for the validity and reliability of forensic methods.” [1]. The Scientific Working Group on DNA Analysis Methods (SWGDAM) [8] and International Society for Forensic Genetics (ISFG) [9] have both published comprehensive guidelines that inform how to test a probabilistic genotyping system to ensure reliability and validity of results.

At the time of the PCAST report there was a considerable number of empirical studies already undertaken by various laboratories who had implemented, or were in the process of implementing, STRmix™. These followed the SWGDAM guidelines [10, 11]. They were not published in the peer reviewed literature largely because it is the policy of many journals not to publish such material. Some of these studies are already in the public domain on websites (see for example [12, 13]).

Since the appearance of the PCAST report, the Federal Bureau of Investigation Laboratory, Quantico, has published its STRmix™ internal validation in the peer reviewed literature [14], also in accordance with the SWGDAM guidelines. This publication reports 277 mixtures with two to five donors and a range of mixture ratios and templates.

In this work we report a further study of 2825 mixtures compiled from 31 laboratories (including multi laboratory systems) who are using STRmix™ in casework (28/31) or currently validating STRmix™ for future use in casework (3/31). Mixtures of three, four, five, and six contributors were specifically targeted in order to address the criticisms of PCAST.

We aim to specifically address the deficiencies described by PCAST in their report by addressing the following points:

1. How well does the method perform as a function of the number of contributors to the mixture? How well does it perform when the number of contributors to the mixture is unknown?
2. How does the method perform as a function of the number of alleles shared among individuals in the mixture? Relatedly, how does it perform when the mixtures include related individuals?
3. How well does the method perform - and how does accuracy degrade - as a function of the absolute and relative amounts of DNA from the various contributors?

We address point 1 in experiment 1 by analysing all submitted mixtures assuming the apparent number of contributors. The apparent number of contributors (N) was determined blind by the submitting laboratory following their own standard operating procedures. Note that this resulted in all six person mixtures being analysed as assuming less than six.

Additionally, we have assumed N+1 for a subset of the data within experiment 2. Point 2 we
address by interrogating the data in experiment 1 with respect to the amount of allelic sharing. Point 3 we address by conducting H_p and H_d true tests on mixtures in experiment 1.

In this work the developers of STRmix™ did not generate or choose the data that was analysed by individual (non-developing) laboratories and they have not censored any data from the results. This adheres to the call by PCAST for work to be carried out in conjunction between developers and non-developing organisations.

There is a fourth point to the list in the PCAST report:

(4) Under what circumstances - and why - does the method produce results (random inclusion probabilities) that differ substantially from those produced by other methods?

We do not address point (4) within this paper, however work is ongoing to address it across a number of continuous and semi-continuous platforms.

2.0 Methods

2.1 Data submission

Participating laboratories submitted ground truth known profiles originating from three to six contributors that had previously been interpreted as part of their STRmix™ internal validation studies. Profiles were submitted as analysed data in the form of text or Excel files. In addition, laboratories provided reference profiles for the known contributors, their validated laboratory specific settings, and the apparent number of contributors to each profile. The apparent number of contributors was determined by the submitting laboratories following their own standard operating procedures. The apparent number of contributors was used as the true number of contributors to a crime profile is never known.

2.1.2 Data description

Apparent three, four and five person mixtures were interpreted by staff at ESR (New Zealand) using STRmix™ V2.5.02. No apparent single source or two person mixtures were interpreted as PCAST, perhaps erroneously, decreed foundational validity to be already established for these [1]. In total there were 2825 mixtures interpreted from 31 different laboratories generated using eight different STR multiplexes and analysed on two different types of capillary electrophoresis (CE) instruments.

The STRmix™ settings used for the interpretation were those determined by the contributing laboratory. These included per allele stutter ratios (back and forward, where determined), allele and stutter peak height variance distributions, analytical thresholds, saturation, and drop-in parameters. For each interpretation, eight MCMC chains of 100,000 burn-in accepts and 50,000 post burn-in accepts were used.

The number of profiles submitted, multiplex, PCR cycle number, CE instrument used, and number of mixtures interpreted for each participating laboratory are provided in Table 1. Note some laboratories submitted profiles generated using more than one multiplex (kit) and some were multi laboratory systems, submitting profiles from different laboratories within the one system. Many of the laboratories undertook dilution series to prepare mixtures for interpretation. These were typically made by taking DNA from a few donors, often staff members, and mixing them in different combinations and ratios. PCAST noted that ”In
human molecular genetics, an experimental validation of an important diagnostic would typically involve hundreds of distinct samples.” (PCAST pg 81). Each different combination of genotypes is a unique contributor combination.

The number of the unique contributor combinations for each mixture type is given in Table 1. For example, there were twelve combinations of different contributors for the apparent three person mixtures submitted by Lab 01. In total there were 25 apparent three person mixtures from Lab 01, hence 12/25 in Table 1. For all laboratories, there were 205 unique three contributor profiles, 132 unique four contributor profiles, and 14 unique five contributor profiles. Within the STRmix™ deconvolution, template is modelled per contributor [11]. The mode of the post burn-in proposals for template per contributor was used to calculate mixture proportion. The mixture proportions as determined by STRmix™ (sorted by ascending proportion for contributor 1, constrained as the ‘major’ contributor) are plotted for each apparent N in Figure 1. At least one contributor in 69.5% of the apparent three person mixtures, 96.5% of the apparent four person mixtures and all of the apparent five person mixtures contained less than 20% of the sample.

PCAST calls for an investigation to be conducted into how a method “performs as a function of the number of alleles shared among individuals in the mixture”. In Figure 2 we provide the distribution of allele sharing for known contributors in the mixtures, broken down by the true number of contributors to a mixture. Allele sharing (AS) is defined as the fraction of alleles in the donors collectively that appear in two or more donor genotypes. The upper tail (>0.80 proportion AS) for the three and four contributor mixtures are a known family group consisting of a mother, father, and their two biological children that was investigated by one participating laboratory.

2.2 Experiment 1

For each profile, likelihood ratios (LRs) were calculated for the true donors and 10,000 false donors. The profiles of the 10,000 non-donors were created by simulation using the FBI Caucasian allele frequencies for each multiplex. All LRs were calculated using the Caucasian allele frequencies from the FBI expanded CODIS core set [15] and a theta (F_ST) of 0.01. The propositions considered were:

- **H_o**: the DNA originated from the person of interest (either true or false donor) and N-1 unknown contributors
- **H_d**: the DNA originated from N unknown contributors

where N was the apparent number of contributors.

Average peak height (APH) was calculated for each contributor by averaging the peak heights of the unmasked alleles (not shared between contributors and not in back stutter positions of any other contributor alleles). Alleles that had dropped out were assigned a height of half the laboratory’s analytical threshold (AT).

2.3 Experiment 2

For one laboratory the three and four contributor profiles were analysed at both the apparent number of contributors (N) and one greater (N+1). For these mixtures, apparent N was the same as known N. In practise, when analysed as N+1 a non-existent contributor with true
mixture proportion 0 has been added to reflect this ambiguous contributor being present at trace amounts. The mixture proportion for this additional contributor was constrained to be low, but not necessarily zero, using the informed mixture proportion prior function in STRmix™ [16]. The LRs for the true donors and 10,000 non-donors were assigned as per Experiment 1.

3.0 Results

3.1 Data review

The summary statistics for each interpretation were reviewed prior to review of the LR. These statistics included the Gelman-Rubin convergence statistic, average \log_{10} (likelihood) of the post burn-in MCMC, the average of the post burn-in allele variance parameter, and the average of the post burn-in stutter variance parameter. These values can be used as diagnostics of the interpretation, to check for adequate MCMC convergence. They are designed to help assess a STRmix™ deconvolution result. No profiles required reinterpretation based on the review of the diagnostics.

The LRs were also reviewed as part of data quality checks. Large inclusionary LRs ($LR>>1$) for false contributors and exclusionary LRs ($LR<1$) for true contributors where the APH was relatively high were investigated. For any given mixture, there is a chance that a given false contributor will have sufficient matching alleles, by chance, to give an $LR>1$. Likelihood ratios for false contributors above 10,000 are provided in Table 2. Following Taylor et al. [17]:

1) The average LR for false contributors should be about 1.
2) The probability of observing a likelihood ratio of x or larger from an unrelated non-donor is no more than $1/x$.

These two statements form the basis for assessing false contributor tests. In an experiment on 10,000 false contributors we would expect approximately one $LR \geq 10,000$, plausibly 10 above 1,000 and 100 above 100. This work reports the comparison of approximately 20 million false contributors. The average LR for all false contributors is approximately 0.12. The reason that this average is below one is because the genotypes that would lead to the highest LRs (and so contribute significantly to the average) were not happened across in the number of H_d true tests performed.

The fraction of allele sharing for the twenty highest false contributors ranged from 0.61 to up to 0.98 of the alleles with the mixture (Table 2).

False exclusions were observed for known contributors where the apparent number of contributors was fewer than the ground truth number of contributors. This was an expected result [18, 19]. By way of explanation we present an example of a true five contributor mixture interpreted assuming four contributors. Figure 3 is a stylised electropherogram for one locus (SE33) with peaks and their corresponding height. STRmix™ has modelled the minor peaks as stutters of the eight alleles all above 800 rfu. Assuming four contributors and eight alleles, each contributor must be heterozygous at this locus. One known contributor who is homozygous at this locus (genotype 18,18) is therefore excluded ($LR_{SE33} = 0$) as a contributor under the assumption of four contributors. A second individual (genotype 12,23.2) is a poor fit to the profile assuming four contributors given the large peak imbalance for these alleles resulting in a low weight and subsequent LR at this locus ($LR_{SE33} = 0.01$).
False exclusions were also observed due to human error if, for example, an incorrect reference profile was supplied. Human errors were all corrected and the LRs reassigned. Another common reason for a false exclusion was due to the lack of separation of alleles during capillary electrophoresis. This occurred when peaks that differed by one base pair (for example a 9.3/10 at TH01) were not separated sufficiently during electrophoresis and one was subsequently not designated at analysis [14]. In all identified occasions an allele corresponding with a minor contributor was ‘hidden’ within the shoulder of an allele from a major contributor. Affected loci were identified by reviewing the electropherogram, and the locus was subsequently ignored during the interpretation.

3.2 Results for Experiment 1

Violin plots [20] showing the densities of log10(LR) per APH range are provided in Figures 4 through 6 for apparent three, four and five contributor mixtures, respectively. The percentage of non-contributors giving LR = 0 is given at the bottom of each plot. The plots show the general trends for both Hp and Hd results.

Plots of log10(LR) versus APH for all mixtures are given in the supplementary material Figures S1 through S9, plotted by apparent number of contributors. These plots are also separated into Hp true (LRs for true donors) and Hd true results (LRs for 10,000 false donors) and Hp and Hd true combined in order to help visualise the trends. In order to facilitate comparison between plots the axis scales have been retained for the same N. For the Hp true results where apparent N differed from the true N these results are indicated with a different plotting symbol. LR results of 0 (exclusions) have been plotted at -40 on the log10 scale.

Normalisation of the CE platform (3130 versus 3500) had no effect on the trends present in the data and is not shown.

The vertical line of points in Figure S8 at 50 rfu where log10(LR)>1 are two siblings from a family study that included their biological father and mother. Due the complete allele sharing with both parents the APH for both siblings were calculated at half the AT, which is artificially low.

Figures 4 through 6 show the same trends as seen in previous work [14, 21], with the addition of information regarding the consequence of over or underestimating the number of contributors. With increased information present within the profile (either by greater amounts of DNA, or by fewer contributors) the power to discriminate contributors from non-contributors increases, and there is a divergence of the LR from neutrality. Also consistent with previous findings [18], the underestimation of the number of contributors tends to either have little effect on the LR or will tend to exclude known contributors. This occurs because genotype sets possessing unreal allele pairings are forced to be given weight within the analysis. Interestingly this exclusionary effect was reduced as mixture complexity increased to the point that there were no exclusions produced from underestimating the number of contributors in five person mixtures (Figure S1). We surmise that this is an effect of the increased allele sharing generally seen in higher order mixtures (Figure 2) meaning that there are increased opportunities for genotype sets to possess the genotypes of the known contributors, even when their number is underestimated.

A plot of log10(LR)s for profiles generated using Identifiler™ Plus 28 cycles analysed on a 3130 or 3500 are plotted in Figures S10 and S11 for the apparent three and four person
mixtures, respectively (Supplementary material). As a visual aid we have added smoothed trend lines (LOWESS lines) for instrument type. These trend lines give a rough idea of the relationship between $\log_{10}(LR)$ and APH for different cases. Any trend line is a compromise between smoothness and error. We did not get materially different results when trying other trend lines available in the ggplot2 package [22].

Applied Biosystems report a three- to fourfold increase in rfu scale with the 3500 models over the older Applied Biosystems 3100 and 3130 instruments [23]. This is evidenced by a general shift in the trend lines for the 3500 to the right in Figures S10 and S11. The lines converge at high APH where the individual contributor profiles are likely fully represented and trend to $\log_{10}(LR) = 0$ as APH decreases.

Plots of $\log_{10}(LR)$s for true contributors identified by kit type are given in Figures S12 and S13 for the apparent three and four person mixtures, respectively (Supplementary material). The LOWESS trend lines for kit type are modelled. These plots indicate the performance of the difference kits over APH for submitted profiles. As the profiles analysed are not the same between the different kits they are not suitable for comparing performance of the different kits. However, they do give an indication of general trends. As an example, comparing the trend lines for Identifiler™ versus GlobalFiler™ mixtures, at higher per contributor APH the $\log_{10}(LR)$s are higher for GlobalFiler™ profiles, most likely due to the additional loci within the GlobalFiler™ kit compared with the Identifiler™ Plus kit. $\log_{10}(LR)$ values for Identifiler™ profiles are generally higher at low contributor APH compared to GlobalFiler™ profiles, however. This could be due to the increased variability of the GlobalFiler™ profiles, all of which were analysed on 3500 instruments, in some cases with cycle numbers greater than 28 [24]. A comparison of the Fusion 5C and Fusion 6C trend lines illustrates the increase in discrimination achieved by adding the highly polymorphic STR locus SE33 resulting in generally higher $\log_{10}(LR)$s.

3.3 Results for Experiment 2

The LRs for H_p true under the assumption of N and N+1 contributors are presented in Figure 7. Within Figure 7 the size of the plotting symbols is relative to the contributor’s proportion of the mixture. The LRs for H_d true are summarised in Figures 8 and 9.

The results shown in Figure 7 demonstrate some findings that are important for DNA mixture interpretation:

1. The general result was a decrease in the LR for true contributors after the assumption of an additional contributor to the mixture. The additional proposed contributor is interacting with the true contributors, diffusing the genotype weights, hence lowering the LR.

2. When a proposed person of interest aligns with the dominant component in a mixed DNA profile, the support for their inclusion to a mixture will not be markedly altered by an increase in the number of contributors under which the DNA profile is analysed. This is consistent with earlier findings [18].

3. Even when only donating a minor component of the total DNA, the change in LR produced by increasing the number of contributors is still not extreme. In no instances has an increase in the number of contributors seen an LR that strongly favours inclusion shift to one that favours exclusion.

We also consider the effect of contributor overestimation on H_d true tests. Figure 8 shows the
distribution of \(H_d \) true log\(_{10}(LR) \) values for three person mixtures when considered as originating from three (N) or four (N+1) contributors. Figure 9 shows the results of the same analysis but when considering four person mixtures as originating from either four (N) or five (N+1) individuals. The bulk of the distribution for the three person mixtures analysed as three is at \(LR = 0 \) (90% of all \(LR \)s) represented by log\(_{10}(LR) = -30 \) in Figure 8. In Figure 9, 81% of four person mixtures analysed as four resulted in \(LR = 0 \), again represented by log\(_{10}(LR) = -30 \).

Figures 8 and 9 show that, when analysed using the true number of contributors, the instances of \(H_d \) true comparisons that lead to outright exclusions is greatly increased. Put another way, inflating the number of contributors leads to an increase in non-zero \(LR \)s. In fact, the most common occurrence from inflating the number of contributors is that during deconvolution the additional proposed contributor is assigned a very low template (near 0) and can possess any genotype (including complete dropout) with relatively even weight. This is visually seen in Figures 8 and 9 by the peak of log\(_{10}(LR)\)s just below 0.

3.4 Allele Sharing

A demonstration of the effect that allele sharing has on the \(LR \) is confounded by other factors that affect the magnitude of the \(LR \), such as:

- The amount of DNA that the individual has donated to the sample,
- The mixture proportions of the contributors (mixtures at an even mixture proportion will tend to have lower \(LR \)s, due to the reduction in information that peak heights provide to determine genotype sets),
- Masking of minor contributors in stutter positions of major contributors.

An individual that shares 100% of alleles with the other contributors to a mixture can still have their genotype resolved completely, based on peak heights, given the right circumstances (as seen in Figure S8 for the family set). The ability to use peak heights in this way is one of the main drivers for the differences in \(LR \)s produced between fully and semi-continuous systems. In Figure 10 we show the \(LR \) (on log\(_{10} \) scale) for all data in the study, broken up into three categories of allele sharing, 0 to 0.5, 0.5-0.7 and 0.70-1.0. The lines in Figure 10 are LOWESS lines to demonstrate the general trends of the data.

From Figure 10, it appears that the greater the allele sharing, the less the power there is to discriminate a true contributor from a non-contributor. This trend is intuitive as it would be expected that the more an individual’s alleles are already accounted for by others in the mixture, the less ‘need’ there is for someone possessing those alleles to reasonably explain the observed peaks in the mixture. However, further experimentation shows that this apparent trend is totally confounded by the number of contributors to the mixture. Figure 11 shows the same style of result as Figure 10, but plotted by number of contributors. In Figure 11 the recovered weight of evidence is plotted, that is, log\(_{10}(LR)/\log_{10}(1/RMP)\). RMP is the conditional match probability following the Balding and Nichols model [25] and a \(\theta \) (\(F_{ST} \)) of 0.01. Carrying out this transformation accounts for the different profiling systems that are being combined in this meta-analysis. In these plots the \(y \)-axis is bounded by one demonstrating that the \(LR \) cannot exceed one divided by the random match probability.
The trend seen in Figure 2 is that higher order mixtures tend to have true contributors that share more alleles (because there are more of them to potentially share), and Figures S1 to S9 demonstrate that higher order mixtures tend to have less discrimination power. Therefore, there is a correlation between allele sharing and LR evident in Figure 10, particularly at low APH. In Figure 11 this trend disappears, showing that it is an effect of number of contributors, and not allele sharing, that is the main driver to LR change.

In Figure 12 we plot a density plot of \(\log_{10}(LR)/\log_{10}(1/RMP) \) by the amount of allele sharing of the non-contributors with the true contributors. The \(\log_{10}(LR)/\log_{10}(1/RMP) \) cannot exceed one, which would indicate a fully resolved component. Inspection of Figure 12 shows that as the fraction of shared alleles increases the \(\log_{10}(LR)/\log_{10}(1/RMP) \) for the non-contributor increases. As allele sharing of the non-contributors with the true contributors decreases, the \(\log_{10}(LR)/\log_{10}(1/RMP) \) decreases with more observations around zero, indicated by the broadening of shape. Figure 12 shows that non-contributors are unlikely to yield large LRs even if they share many alleles with the true contributors. In other words, non-contributors that share most of their alleles with the mixture’s donors can typically still be excluded because the peak heights make their inclusion unlikely.

On the other hand, Figure 6 shows that true contributors can yield LRs close to the inverse of the single source match probability even in five person mixtures. This means that at least this mixture donor’s component is almost fully resolved on the basis of peak heights. This may be expected, for instance, in a 10:1:1:1:1 mixture where the major may be clearly resolved by simply ‘eyeballing’ the electropherogram.

4.0 Discussion

4.1 Performance of the system with regards to contributor number

In principle, we observe less discriminatory LRs for true and non-contributors when the number of assigned contributors increases. This has been demonstrated previously using STRmix™ [14, 21]. This does not mean that mixed DNA profiles containing more contributors are less reliable, just that they are less informative with respect to potential contributors.

The true number of contributors to a crime profile is never known. Within this work we have used the apparent number of contributors when interpreting the mixtures. Apparent N was determined by each submitting laboratory using their own validated methods. The assigned N can be fewer than the true N when individuals within a profile have “dropped out” (their alleles falling below the detection limit of the CE) and within mixtures of contributors with high amounts of allele sharing (an extreme example being mixtures of related individuals). Apparent N may be assigned a number higher than true N in the presence of artefacts, such as stutter, that are larger than expected. This assignment can be confounded in saturated profiles.

As the number of contributors to a DNA profile increases, the DNA mixture becomes more complex. Figures S1 through S9 show LRs generated for \(H_p \) and \(H_d \) true for apparent three, four and five person mixtures plotted against APH. As the number of contributors to the mixture increases the LRs trend towards one. This holds true for both \(H_p \) and \(H_d \) true although the effect for \(H_d \) true data is less clear given the number of data. As the number of contributors to a mixture increases, so too do the potential genotype combinations that can
explain the observed data. This results in an overall reduction in the weights assigned to each genotype set, as these weights are spread across more potential genotype sets. This behaviour was previously described by Taylor [21].

When overestimating the number of contributors to a mixture (N+1) the LR generally decreased for true contributors. This can be explained by STRmix™ spreading the weights for the true donors across more genotype sets. For four person mixtures the magnitude of the effect on the LR for known contributors was somewhat dependent on the proportion that the donor contributed to the mixture. The effect was greater for minor contributors to the mixture and less for major contributors (represented by more data points on the x = y line within Figure 7). Overestimating the number of contributors had little or no effect on the LR of the major contributor to the mixture, demonstrated by the largest circles sitting on the x = y trend line. In these cases the additional proposed contributor was modelled as a trace contributor, sharing alleles with the true minor contributors to those mixtures and having little effect on the major. For the three person mixtures the effect was more visible across a range of mixture proportions. This was likely due to similarities in mixture proportions of the different contributors, with no obvious major contributors.

The effect of overestimation of the number of contributors was also determined for non-contributors using Hp true tests. When assuming N+1 the number of occurrences of non-contributors resulting in non-exclusionary LRs increased. During deconvolution the additional proposed contributor is assigned very low template and can possess any genotype leading to these results.

In summary, overestimation of the number of contributors generally leads to lower LRs for true contributors (Figure 7) and an increase in LRs for non-contributors (Figure 8).

Underestimating the number of contributors can result in false exclusions of true donors. In this study, this is seen when apparent N is fewer than true N. This is demonstrated in the Hp true plots within the supplementary material where apparent N that differs from known N are indicated with a different plotting symbol.

When assigning N, for false donors the only risk is overestimation, as there is a small increase in the number of very low grade false inclusions. With respect to the LR for true donors, you are either correct or conservative when N is either under or overestimated.

In Figure 13 we provide a plot showing the level of over and under-estimation of the apparent N compared to the known N in this study.

N against known N. As an example, -1 indicates apparent N was one fewer than known N.

Figure 13 shows that an underestimation of N was more common than an overestimation of N. There are three broad reasons why N might be underestimated:

1) One contributor has donated so little DNA that their presence is unseen in the DNA profile, we call this the tiny minor scenario;
2) Contributors are present so that one or more is completely masked by others in the profile, and in a way so that peak height does not reveal their presence. This is the hidden contributor scenario;
3) There is a combination of multiple low-level contributors that, due to some masking and some dropout, produce a profile where the apparent number of contributors is fewer than the known number of contributors. This is the low level donors’ scenario.

Each of these is discussed in turn below.

4.1.1 The tiny minor

Any profile is a result of fragments of DNA that have been aliquoted from a DNA extract and then amplified during PCR. There exists a possibility that no DNA fragments from a minor DNA donor have been sampled for PCR. We first ask what we consider to be the correct number of contributors; the number of different individual’s DNA in the DNA extract, or the number of different individual’s DNA in the PCR? If it is the former, then we would ask; if the individual has contributed so little DNA that the observed fluorescence in the DNA profile is not affected by their presence, then what purpose is served by considering them as a contributor? We note that many of the underestimates of number of contributors in this study arise from such situations.

4.1.2: The hidden contributor

Consider a DNA profile where multiple individuals, are contributing to a DNA profile, however they possess sufficient allelic overlap so that the DNA profile appears as a lower order mixture. The apparent number of contributors being lower than the known number of contributors relies on the DNA profile being formed in such a way that peak imbalances will not indicate the true number of contributors. For example, a combination of two individuals who are homozygous at each locus, combined in equal proportions to a DNA sample will always appear single source. However, this risk of multiple contributors being combined to meet theses specifications is very remote, and artificial. It only tends to occur in mixtures of family members, such as a child and their parents donating equal amounts of DNA to a sample. The Coble et al. [26] experiment is valuable but does not take into account peak heights, and so the study does not reflect the information that peak heights provide analysts in their assignment of N. This is evident in the difference between the results obtained by Coble et al. and our work. For example, Coble et al. reported the probability of a known five-person mixture presenting as an apparent five person mixture was less than 0.01, whereas in our study, based on human assignment, this probability is 0.36 (and noting that many of the remaining mixtures fall into the tiny minor and low donor scenarios).

4.1.3: The low level donors’ scenario

This scenario is where there are multiple low level contributors, who are present in low amounts such that they exhibit significant dropout and so in combination the apparent number of contributor is fewer than the known number of contributors. This is a scenario that could plausibly occur with reasonable probability when multiple low level contributors are present (see [16] for an exploration of this). Experimentation has shown that very low level contributors will yield LRs of approximately one. It is likely that when analysed under the known number of contributors, all true (and a majority of false) contributors give this neutral LR value. In other words, the profile does not have the information in order to distinguish true from false donors. If analysed as the apparent number of contributors then the likely outcome is an exclusion of the known contributors (and more exclusions of non-contributors). The primary difference in LR between known and apparent number of contributors is between
neutral and possibly exclusionary, which we could argue presents less risk of misleading a court.

4.1.4: Overestimating the number of contributors

Our studies show that the chance of overestimating N in relation to the known value is less common that underestimation and cannot be predicted so easily by simulation as in Coble et al. [26]. It requires two events to occur:

1) There is a stochastic event, such as a peak imbalance, high stutter or drop-in, which occurs at an improbable level,
2) The analyst interpreting the profile feels that the out-of-place fluorescence has resulted in a profile that is more likely to exist if it has originated from more contributors that the known number of contributors.

Figure 7 shows that the effect of overestimation of N is relatively mild on known contributors to a DNA profile. STRmix™ assigns near-zero mass to the non-existent contributor, leaving the other contributors relatively unchanged. The largest effect is to decrease the LR for minor known contributors. For non-contributors, Figure 8 shows the effect that has previously been described, i.e. that an overestimation of N tends to increase low-level LRs for non-contributors. In effect the experiment is showing the practical functioning of the catch-all statement suggested earlier.

Our findings show that as mixture complexity increases, the ability of an analyst to designate the known number of contributor is reduced. As explained, it is actually often the apparent number of contributors that is the more appropriate value to choose for analysis. In assigning apparent number of contributors the overwhelming result is alignment with the desired trends in LRs with regards to profile complexity and DNA amount (i.e. those described in [21], where known number of contributors was used for all analyses) are obtained. In the rare circumstances where the known contributors were not supported as donors of DNA to the profile, this was due to one of the three underestimate conditions described above in 4.1.1 through 4.1.3 above.

4.2 Performance as a function of amount of allele sharing

Within Figure 10 the trend is that the greater the allele sharing, the less the power to discriminate a true contributor from a non-contributor. However, this relationship is dominated by the number of contributors within the mixture (as seen in Figure 11). Higher order mixtures result in less informative LRs. This effect is related more to the number of contributors within a mixture than the amount of allele sharing between contributors within the mixture. There is a relationship between the number of contributors and proportion of allele sharing within a mixture. It has previously been shown that the probability of a higher order mixture appearing as having originated from one fewer individual based on allele count alone is high [26, 27]. For example, Coble et al. calculated the probability of a six contributor profile appearing as a five contributor profile based on allele count as 0.8599 for the GlobalFiler™ 24 locus multiplex [26]. The study by Coble et al. did not take into account peak height, thereby making the values in their study a worst case scenario.

4.3 Performance of the system with regards to amount of DNA

In principle, we observe less discriminatory LRs for true and non-contributors when the APH
(template) decreases per contributor. Again, this does not mean that mixed DNA profiles
with contributors containing less DNA are unreliable, just they are less informative with
respect to the true and non-contributors.

PCAST describe limits on PG reliability based on mixture proportion and number of
contributors. Per contributor template is more informative of LR than mixture proportion.
With respect to mixture proportion, the limit is not the software but the hardware. For
example, assuming a minor contributor’s alleles within a mixture are present just above the
analytical threshold of a 3130 (typically 50 rfu) and a major contributor’s alleles are at the
saturation limit (typically 7000 rfu), this would be maximum mixture proportion of 140:1.
2293 out of the 2825 submitted profiles had at least one component who contributed less than
20% of the sample.

5.0 Conclusion

In their review of published literature validating probabilistic genotyping, PCAST surmised
that the limits of foundational validity extended to three person mixtures where the person
of interest made up at least 20% of the profile. What was not taken into account during the
PCAST review was a wealth of unpublished validation material residing in laboratories that
had validated (or were in the process of validating) probabilistic genotyping software. Due to
our involvement with STRmix™ we are aware of the breadth of such validation material for
STRmix™ specifically, and assume that similar material must be present for other
probabilistic genotyping systems. A disconnect exists between the PCAST desire for
laboratories to publish their validation material in peer reviewed journals and the general
resistance to such publications by the journals themselves. This is for the completely
understandable reason that they are generally not novel, or, individually, of general interest to
the forensic community.

PCAST has said “When further studies are published, it will likely be possible to extend the
range in which scientific validity has been established to include more challenging samples.
As noted above, such studies should be performed by or should include independent research
groups not connected with the developers of the methods and with no stake in the outcome.”

There has already been an example of published material that extend the PCAST limits, from
the Forensic Biology laboratory at the Federal Bureau of Investigation [14]. We add to that
published work, by compiling the STRmix™ validation material from 31 laboratories, which
allows a novel look at data spanning laboratory technology and process. PCAST highlighted
four key areas that they felt additional validation would be merited:

(1) How well does the method perform as a function of the number of contributors to the
mixture? How well does it perform when the number of contributors to the mixture is
unknown?
(2) How does the method perform as a function of the number of alleles shared among
individuals in the mixture? Relatedly, how does it perform when the mixtures include
related individuals?
(3) How well does the method perform—and how does accuracy degrade—as a function
of the absolute and relative amounts of DNA from the various contributors?
(4) Under what circumstances—and why—does the method produce results (random
inclusion probabilities) that differ substantially from those produced by other methods?

We address points 1 to 3 in this study. It is unknown whether further addendums will be
released by the PCAST group, or whether there are any plans for a follow-up study in the future. The material we provide here demonstrates a foundational validity of, at least, the STRmix™ software method for complex, mixed DNA profiles to levels well beyond the complexity and contribution levels suggested by PCAST. The study was done in accordance with the specific manner outlined in the PCAST report.

6.0 Acknowledgements

This work was supported in part by grant 2011-DN-BX-K541 from the US National Institute of Justice. Points of view in this document are those of the authors and do not necessarily represent the official position or policies of their organisations. The authors would like to thank Professor James Curran for his help in creating the plots in Figure 1.

References

Figures
Figure 1: Mixture proportions as calculated by STRmix™ and sorted by ascending proportion plotted by apparent N where 1a is apparent three, 1b apparent four and 1c apparent five N. Plots are smoothed for improved readability.

Figure 2: Distribution of allele sharing (AS) for known contributors to mixtures, plotted by true N.
<table>
<thead>
<tr>
<th>Peak</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>892</td>
</tr>
<tr>
<td>14</td>
<td>116</td>
</tr>
<tr>
<td>15</td>
<td>1104</td>
</tr>
<tr>
<td>17</td>
<td>155</td>
</tr>
<tr>
<td>18</td>
<td>1899</td>
</tr>
<tr>
<td>22.2</td>
<td>186</td>
</tr>
<tr>
<td>23.2</td>
<td>2334</td>
</tr>
<tr>
<td>24.2</td>
<td>147</td>
</tr>
<tr>
<td>25.2</td>
<td>1386</td>
</tr>
<tr>
<td>26.2</td>
<td>1508</td>
</tr>
<tr>
<td>27.2</td>
<td>1410</td>
</tr>
<tr>
<td>30.2</td>
<td>89</td>
</tr>
<tr>
<td>31.2</td>
<td>953</td>
</tr>
</tbody>
</table>

Figure 3: Stylised locus electropherogram with tabulated peak designations and their corresponding heights for a true five person mixture interpreted assuming four contributors.

Figure 4: Violin plot of log$_{10}(LR)$ versus APH for apparent three contributor mixtures.
Figure 5: Violin plot of $\log_{10}(LR)$ versus APH for apparent four contributor mixtures

Figure 6: Violin plot of $\log_{10}(LR)$ versus APH for apparent five contributor mixtures
Figure 7: The \(LRs\) for \(H_p\) true for three and four person mixtures from one laboratory under the assumption of \(N\) and \(N+1\) contributors. The \(x = y\) line is shown. The size of the plotting symbol represents the mixture proportion of the donor.

Figure 8: The \(LRs\) for \(H_d\) true for three person mixtures from one laboratory under the assumption of \(N\) and \(N+1\). The bulk of the distribution for the three person mixtures analysed as three is at \(LR = 0\) (90% of all \(LRs\)) represented by \(\log_{10}(LR) = -30\).
Figure 9: The LR\textsubscript{s} for \(H_d\) true for four person mixtures from one laboratory under the assumption of \(N\) and \(N+1\). 81\% of four person mixtures analysed as four resulted in \(LR = 0\), represented by log\textsubscript{10}(LR) = -30.

Figure 10: The size of the log\textsubscript{10}(LR) by considering differing amounts of input DNA (APH) and amount of allelic sharing (AS). The set of data points with high AS (0.7,1] are a family set (father, mother, children) where all alleles from the children are masked by the parents and therefore \(APH\) was set to half of the AT.
Figure 11: The size of the recovered weight of evidence $\log_{10}(LR)/\log_{10}(1/RMP)$ by considering differing amounts of input DNA (APH) and amount of allelic sharing (AS) plotted by true number of contributors.

Figure 12: Density plot of $\log_{10}(LR)/\log_{10}(1/RMP)$ by the amount of allele sharing of the non-contributors with the true contributors.
Figure 13: Plot of percentage of mixtures showing various differences between apparent N and known
Table 1: A list of the contributing laboratories, multiplex (kit) used, PCR cycle number, and CE instrument. The total number of mixtures interpreted per laboratory are sorted by apparent number of contributors with the number of unique contributor combinations and minimum minor proportion as determined by STRmix™ indicated.

<table>
<thead>
<tr>
<th>Lab</th>
<th>Samples submitted (true N)</th>
<th>Kit</th>
<th>Cycle Number</th>
<th>CE</th>
<th>Apparent 3p</th>
<th>Apparent 4p</th>
<th>Apparent 5p</th>
</tr>
</thead>
<tbody>
<tr>
<td>L01</td>
<td>N₃ = 24, N₄ = 23</td>
<td>Fusion 5C</td>
<td>28</td>
<td>3130</td>
<td>12/25 (7%)</td>
<td>12/22 (7%)</td>
<td>-</td>
</tr>
<tr>
<td>L02</td>
<td>N₃ = 19, N₄ = 24</td>
<td>Identifiler™ Plus</td>
<td>28</td>
<td>3500</td>
<td>4/21 (6%)</td>
<td>3/22 (6%)</td>
<td>-</td>
</tr>
<tr>
<td>L03</td>
<td>N₃ = 88, N₄ = 128, N₅ = 48</td>
<td>GlobalFiler™</td>
<td>29</td>
<td>3500</td>
<td>5/87 (3%)</td>
<td>6/161 (<1%)</td>
<td>2/16 (5%)</td>
</tr>
<tr>
<td>L04</td>
<td>N₃ = 3, N₄ = 3</td>
<td>NGM SElect™</td>
<td>30</td>
<td>3130</td>
<td>1/3 (10%)</td>
<td>1/3 (6%)</td>
<td>-</td>
</tr>
<tr>
<td>L05</td>
<td>N₃ = 39, N₄ = 37</td>
<td>Fusion 6C</td>
<td>29</td>
<td>3130</td>
<td>5/50 (3%)</td>
<td>4/26 (<1%)</td>
<td>-</td>
</tr>
<tr>
<td>L06</td>
<td>N₃ = 28, N₄ = 69</td>
<td>Identifiler™ Plus</td>
<td>28</td>
<td>3130</td>
<td>4/67 (28%)</td>
<td>2/30 (12%)</td>
<td>-</td>
</tr>
<tr>
<td>Sample</td>
<td>N<sub>3</sub> = 29, N<sub>4</sub> = 30</td>
<td>Identifiler<sup>™</sup> Plus</td>
<td>28</td>
<td>3130</td>
<td>4/36 (2%)</td>
<td>1/23 (2%)</td>
<td>-</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
<td>---------------------------</td>
<td>----</td>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>L08</td>
<td>N<sub>3</sub> = 19, N<sub>4</sub> = 20</td>
<td>Fusion 6C</td>
<td>29</td>
<td>3500</td>
<td>2/24 (7%)</td>
<td>1/15 (4%)</td>
<td>-</td>
</tr>
<tr>
<td>L09</td>
<td>N<sub>3</sub> = 28, N<sub>4</sub> = 8, N<sub>5</sub> = 6</td>
<td>Fusion 5C</td>
<td>30</td>
<td>3500</td>
<td>4/28 (1%)</td>
<td>2/8 (2%)</td>
<td>1/6 (6%)</td>
</tr>
<tr>
<td></td>
<td>N<sub>3</sub> = 22, N<sub>4</sub> = 22</td>
<td>Identifiler<sup>™</sup> Plus</td>
<td>29</td>
<td>3500</td>
<td>1/22 (1%)</td>
<td>1/22 (2%)</td>
<td>-</td>
</tr>
<tr>
<td>L10</td>
<td>N<sub>3</sub> = 29, N<sub>4</sub> = 52, N<sub>5</sub> = 12</td>
<td>GlobalFiler<sup>™</sup></td>
<td>28</td>
<td>3500</td>
<td>4/64 (3%)</td>
<td>4/29 (1%)</td>
<td>-</td>
</tr>
<tr>
<td>L11</td>
<td>N<sub>3</sub> = 69, N<sub>4</sub> = 42</td>
<td>GlobalFiler<sup>™</sup></td>
<td>28</td>
<td>3500</td>
<td>2/69 (<1%)</td>
<td>2/42 (1%)</td>
<td>-</td>
</tr>
<tr>
<td>L12</td>
<td>N<sub>3</sub> = 28, N<sub>4</sub> = 32</td>
<td>NGM SElect<sup>™</sup></td>
<td>29</td>
<td>3500</td>
<td>2/38 (5%)</td>
<td>1/22 (5%)</td>
<td>-</td>
</tr>
<tr>
<td>L13</td>
<td>N<sub>3</sub> = 3, N<sub>4</sub> = 3</td>
<td>NGM SElect<sup>™</sup></td>
<td>30</td>
<td>3130</td>
<td>1/3 (9%)</td>
<td>1/3 (3%)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>N<sub>3</sub> = 3, N<sub>4</sub> = 3</td>
<td>PowerPlex® ESI17 Pro</td>
<td>30</td>
<td>3130</td>
<td>1/3 (13%)</td>
<td>1/3 (6%)</td>
<td>-</td>
</tr>
<tr>
<td>L14</td>
<td>N<sub>3</sub> = 10, N<sub>4</sub> = 13</td>
<td>PowerPlex® 16 HS</td>
<td>30</td>
<td>3130</td>
<td>2/16</td>
<td>1/7</td>
<td>-</td>
</tr>
<tr>
<td>Sample</td>
<td>N3</td>
<td>N4</td>
<td>N5</td>
<td>System</td>
<td>Reaction</td>
<td>Coverage (%)</td>
<td>Drop (%)</td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>--------------------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>L15</td>
<td>N3 = 26</td>
<td></td>
<td></td>
<td>PowerPlex® ESI17 Fast</td>
<td>11/26 (2%)</td>
<td>7%</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>N3 = 28</td>
<td></td>
<td></td>
<td>PowerPlex® ESI17 Fast</td>
<td>11/28 (2%)</td>
<td>5%</td>
<td>-</td>
</tr>
<tr>
<td>L16</td>
<td>N3 = 29, N4 = 11</td>
<td></td>
<td></td>
<td>Identifiler™ Plus</td>
<td>9/38 (4%)</td>
<td>1/2 (5%)</td>
<td>-</td>
</tr>
<tr>
<td>L17</td>
<td>N3 = 26, N4 = 32</td>
<td></td>
<td></td>
<td>GlobalFiler™</td>
<td>2/32 (4%)</td>
<td>1/26 (1%)</td>
<td>-</td>
</tr>
<tr>
<td>L18</td>
<td>N3 = 97, N4 = 46</td>
<td></td>
<td></td>
<td>Fusion 5C</td>
<td>7/108 (7%)</td>
<td>3/35 (2%)</td>
<td>-</td>
</tr>
<tr>
<td>L19</td>
<td>N3 = 28, N4 = 30</td>
<td></td>
<td></td>
<td>Identifiler™ Plus</td>
<td>9/37 (3%)</td>
<td>15/21 (2%)</td>
<td>-</td>
</tr>
<tr>
<td>L20</td>
<td>N3 = 22, N4 = 23, N5 = 12</td>
<td></td>
<td></td>
<td>GlobalFiler™</td>
<td>9/42 (<1%)</td>
<td>4/13 (5%)</td>
<td>1/2 (1%)</td>
</tr>
<tr>
<td>L21</td>
<td>N3 = 43, N4 = 39</td>
<td></td>
<td></td>
<td>Fusion 6C</td>
<td>14/59 (4%)</td>
<td>9/23 (1%)</td>
<td>-</td>
</tr>
<tr>
<td>L22</td>
<td>N3 = 62, N4 = 65, N5 = 11</td>
<td></td>
<td></td>
<td>GlobalFiler™</td>
<td>27/69 (3%)</td>
<td>25/64 (1%)</td>
<td>2/5 (7%)</td>
</tr>
<tr>
<td>Sample</td>
<td>N<sub>3</sub></td>
<td>N<sub>4</sub></td>
<td>Method</td>
<td>n</td>
<td>MAF</td>
<td>AAF</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>L23</td>
<td>72, 64</td>
<td>Fusion 6C</td>
<td>29</td>
<td>3500</td>
<td>6/83 (1%)</td>
<td>4/53 (<1%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>159, 60</td>
<td>Identifiler™ Plus</td>
<td>29</td>
<td>3130</td>
<td>4/161 (1%)</td>
<td>3/58 (<1%)</td>
<td></td>
</tr>
<tr>
<td>L24</td>
<td>35, 36</td>
<td>GlobalFiler™</td>
<td>29</td>
<td>3500</td>
<td>4/37 (3%)</td>
<td>3/34 (2%)</td>
<td></td>
</tr>
<tr>
<td>L25</td>
<td>20, 24</td>
<td>GlobalFiler™</td>
<td>29</td>
<td>3500</td>
<td>1/20 (5%)</td>
<td>1/24 (6%)</td>
<td></td>
</tr>
<tr>
<td>L26</td>
<td>18, 12</td>
<td>Identifiler™ Plus</td>
<td>28</td>
<td>3130</td>
<td>17/25 (6%)</td>
<td>3/5 (<1%)</td>
<td></td>
</tr>
<tr>
<td>L27</td>
<td>51, 42</td>
<td>Identifiler™ Plus</td>
<td>28</td>
<td>3500</td>
<td>5/71 (3%)</td>
<td>2/22 (<1%)</td>
<td></td>
</tr>
<tr>
<td>L28</td>
<td>12, 77, 76, 65</td>
<td>Fusion 5C</td>
<td>29</td>
<td>3500</td>
<td>6/24 (3%)</td>
<td>7/151 (<1%)</td>
<td>6/55 (1%)</td>
</tr>
<tr>
<td>L29</td>
<td>52, 52</td>
<td>GlobalFiler™</td>
<td>28</td>
<td>3500</td>
<td>2/53 (3%)</td>
<td>1/51 (1%)</td>
<td></td>
</tr>
<tr>
<td>L30</td>
<td>31, 42</td>
<td>GlobalFiler™</td>
<td>29</td>
<td>3500</td>
<td>4/42 (4%)</td>
<td>3/31 (<1%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1%)</td>
<td>(<1%)</td>
<td>(<1%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL Number of each mixture type</td>
<td></td>
<td>205/1591</td>
<td>132/1136</td>
<td>14/98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unique combinations/total</td>
<td></td>
<td>(<1%)</td>
<td>(<1%)</td>
<td>(<1%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(minimum minor contribution)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Summary of large inclusionary \(LR \)s for false contributors and percentage of overlapping alleles

<table>
<thead>
<tr>
<th>Number</th>
<th>Kit</th>
<th>Apparent N</th>
<th>Known N</th>
<th>(LR)</th>
<th>Fraction of allele sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GlobalFiler(^{TM})</td>
<td>3</td>
<td>3</td>
<td>505,924</td>
<td>0.81</td>
</tr>
<tr>
<td>2</td>
<td>Identifiler Plus(^{TM})</td>
<td>3</td>
<td>3</td>
<td>379,716</td>
<td>0.90</td>
</tr>
<tr>
<td>3</td>
<td>GlobalFiler(^{TM})</td>
<td>4</td>
<td>4</td>
<td>197,907</td>
<td>0.98</td>
</tr>
<tr>
<td>4</td>
<td>GlobalFiler(^{TM})</td>
<td>3</td>
<td>4</td>
<td>134,486</td>
<td>0.83</td>
</tr>
<tr>
<td>5</td>
<td>GlobalFiler(^{TM})</td>
<td>4</td>
<td>4</td>
<td>88,022</td>
<td>0.98</td>
</tr>
<tr>
<td>6</td>
<td>GlobalFiler(^{TM})</td>
<td>4</td>
<td>5</td>
<td>53,019</td>
<td>0.93</td>
</tr>
<tr>
<td>7</td>
<td>Fusion 6C</td>
<td>3</td>
<td>3</td>
<td>47,062</td>
<td>0.85</td>
</tr>
<tr>
<td>8</td>
<td>Fusion 5C</td>
<td>3</td>
<td>3</td>
<td>43,065</td>
<td>0.78</td>
</tr>
<tr>
<td>9</td>
<td>Fusion 5C</td>
<td>3</td>
<td>3</td>
<td>26,874</td>
<td>0.80</td>
</tr>
<tr>
<td>10</td>
<td>GlobalFiler(^{TM})</td>
<td>3</td>
<td>3</td>
<td>19,340</td>
<td>0.67</td>
</tr>
<tr>
<td>11</td>
<td>Fusion 5C</td>
<td>3</td>
<td>3</td>
<td>17,582</td>
<td>0.61</td>
</tr>
<tr>
<td>12</td>
<td>Identifiler Plus(^{TM})</td>
<td>3</td>
<td>4</td>
<td>15,765</td>
<td>0.80</td>
</tr>
<tr>
<td>13</td>
<td>Fusion 5C</td>
<td>4</td>
<td>4</td>
<td>13,717</td>
<td>0.78</td>
</tr>
<tr>
<td>14</td>
<td>Identifiler Plus(^{TM})</td>
<td>3</td>
<td>3</td>
<td>12,135</td>
<td>0.93</td>
</tr>
<tr>
<td>15</td>
<td>NGM SElect(^{TM})</td>
<td>3</td>
<td>4</td>
<td>11,188</td>
<td>0.93</td>
</tr>
<tr>
<td>16</td>
<td>GlobalFiler(^{TM})</td>
<td>4</td>
<td>5</td>
<td>10,896</td>
<td>0.80</td>
</tr>
<tr>
<td>17</td>
<td>Fusion 5C</td>
<td>4</td>
<td>6</td>
<td>10,309</td>
<td>0.82</td>
</tr>
<tr>
<td>18</td>
<td>Fusion 5C</td>
<td>3</td>
<td>3</td>
<td>10,298</td>
<td>0.80</td>
</tr>
</tbody>
</table>
Access to STRmix™ Software by Defence Legal teams

STRmix™ is available for purchase by all parties, including scientific experts that act on behalf of defence legal teams. Such scientific experts can (and have) attended paid STRmix™ training workshops, which are held regularly, where they receive a time-limited trial version of the software. In addition, many papers describing the biological model, mathematics and performance of STRmix™ have been published internationally (see References [1-12] below), contributing to the information available to all parties. Comparison with other methods has been undertaken in conjunction with third parties (see References [12-13] below).

The developers consider that the STRmix™ software is best tested by examining the Extended Output for the compiled STRmix™ software, rather than the source code. The Extended Output of STRmix™ contains the intermediate steps of the STRmix™ interpretation process, allowing individual forensic laboratories, or experts for the defence, to verify the accuracy of STRmix™.

On a day to day basis, defence legal teams may access the production version of the STRmix™ software and more particularly the Extended Output in the same way as forensic DNA laboratories, by:
- Attending a paid STRmix™ training workshop to receive full STRmix™ training (a condition of STRmix™ use for casework) which includes a time-limited trial version of STRmix™
- Purchasing STRmix™ (training additional).

Where STRmix™ has been used to generate scientific evidence for the prosecution in a case being heard in a court of law (“the Case”), defence expert witnesses retained by the accused in the Case (“the Recipient”) can request in writing access for inspection of any or all of the following:
- STRmix™ source code,
- a time limited trial version of the production version of the STRmix™ software,
- developmental validation records, and
- the STRmix™ User’s Manual.

(“the STRmix™ documentation”)

ESR (“the Discloser”) will disclose the STRmix™ documentation or part thereof to the Recipient, only under the following conditions:

1. The Recipient cannot be a developer of, and cannot have any direct or indirect commercial or employment interest in, competing software products, and
2. The inspection of the STRmix™ documentation is to be carried out by the Recipient provided the Recipient is an expert witness retained by the accused in the Case, and

3. The inspection of the STRmix™ documentation will only occur after receipt of a STRmix™ confidentiality agreement, signed by the Recipient and

4. The STRmix™ documentation or part thereof released to the Recipient under this Agreement will be limited to that STRmix™ version used in the Case, and

5. Costs of disclosure will be recoverable by the Discloser from the Recipient, and

6. Where the source code is being disclosed, it will be produced for inspection at such a location and between such dates as agreed between the Discloser and the Recipient, in accordance with the following conditions:
 a. Under direct supervision in the room in which the disclosure occurs, by a representative of the Discloser, during the full period of the disclosure
 b. By means of a stand-alone computer to be supplied by the Discloser, which will include the following:
 i. STRmix™ source code in Java programming language format;
 ii. software used to view the code;
 c. no photographic devices including mobile telephones or tablet devices will be permitted in the room with the stand-alone computer;
 d. the stand-alone computer will not be enabled to accept storage devices such as USB stick or CD; and
 e. only the taking of handwritten notes is permitted during the disclosure.

7. Where the trial version of the STRmix™ software is being disclosed, the Recipient agrees to adhere to the licence terms of the trial version of the Software as outlined at Paragraph 7b) below and the disclosure shall be made by means of an installation link emailed to the Recipient by a representative of the Discloser on receipt of a fee of USD150. The disclosure will include the following:
 a. a limited, revocable, non-exclusive, non-transferable, royalty-free license to install and use one copy of the STRmix™ software on a single computer, device, workstation, terminal, or other digital electronic or analog device for 60 days; and
 b. a copy of the following document in PDF: “STRmix™ TRIAL SOFTWARE LICENSE AGREEMENT- 60 Day Trial License for STRmix™” which the Recipient hereby agrees shall govern the Recipient’s use of the trial version of the STRmix™ software.

8. Where the STRmix™ User’s Manual is being disclosed the disclosure shall be made by means of email from the Discloser which will include the following:
 a. the STRmix™ User’s Manual in PDF format, watermarked for use only by the Recipient.

9. Where the developmental validation records are being disclosed the disclosure shall be made by means of email from the Discloser which will include the documents in PDF format.

For additional information on access to STRmix™ please contact bjorn.sutherland@esr.cri.nz
References